From Darwinian Evolution to Swarm Computation and Gamesourcing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F19%3A10244899" target="_blank" >RIV/61989100:27740/19:10244899 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27240/19:10244899
Výsledek na webu
<a href="https://www.taylorfrancis.com/books/e/9781315167084/chapters/10.1201/9781315167084-7" target="_blank" >https://www.taylorfrancis.com/books/e/9781315167084/chapters/10.1201/9781315167084-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1201/9781315167084" target="_blank" >10.1201/9781315167084</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
From Darwinian Evolution to Swarm Computation and Gamesourcing
Popis výsledku v původním jazyce
This chapter discusses how to generate a network reflecting the behavior of selected evolutionary and swarm algorithms as much as possible to make a thorough analysis of relationships between individuals in the population. Such analysis is considered to be the starting point in the process of development of enhanced algorithms, where the results of the analysis are incorporated. The chapter investigates if there is a connection between an individual with the best fitness value and a node with the highest out-degree. Clustering coefficients of short-interval networks (SIN) generated on the basis of the differential evolution (DE) algorithms are very small; however, there are statistically significant differences between clustering coefficients of networks generated on the basis of the different DE algorithms. The principle of SINs creation as well as the principle of DE algorithms has caused very low density of networks.
Název v anglickém jazyce
From Darwinian Evolution to Swarm Computation and Gamesourcing
Popis výsledku anglicky
This chapter discusses how to generate a network reflecting the behavior of selected evolutionary and swarm algorithms as much as possible to make a thorough analysis of relationships between individuals in the population. Such analysis is considered to be the starting point in the process of development of enhanced algorithms, where the results of the analysis are incorporated. The chapter investigates if there is a connection between an individual with the best fitness value and a node with the highest out-degree. Clustering coefficients of short-interval networks (SIN) generated on the basis of the differential evolution (DE) algorithms are very small; however, there are statistically significant differences between clustering coefficients of networks generated on the basis of the different DE algorithms. The principle of SINs creation as well as the principle of DE algorithms has caused very low density of networks.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
From Parallel to Emergent Computing
ISBN
978-1-351-68191-9
Počet stran výsledku
42
Strana od-do
135-176
Počet stran knihy
608
Název nakladatele
CRC Press
Místo vydání
Boca Raton
Kód UT WoS kapitoly
—