GPU Accelerated Path Tracing of Massive Scenes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F21%3A10247663" target="_blank" >RIV/61989100:27740/21:10247663 - isvavai.cz</a>
Výsledek na webu
<a href="https://dl.acm.org/doi/pdf/10.1145/3447807" target="_blank" >https://dl.acm.org/doi/pdf/10.1145/3447807</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3447807" target="_blank" >10.1145/3447807</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
GPU Accelerated Path Tracing of Massive Scenes
Popis výsledku v původním jazyce
This article presents a solution to path tracing of massive scenes on multiple GPUs. Our approach analyzes the memory access pattern of a path tracer and defines how the scene data should be distributed across up to 16 CPUs with minimal effect on performance. The key concept is that the parts of the scene that have the highest amount of memory accesses are replicated on all GPUs. We propose two methods for maximizing the performance of path tracing when working with partially distributed scene data. Both methods work on the memory management level and therefore path tracer data structures do not have to be redesigned, making our approach applicable to other path tracers with only minor changes in their code. As a proof of concept, we have enhanced the open-source Blender Cycles path tracer. The approach was validated on scenes of sizes up to 169 GB. We show that only 1 5% of the scene data needs to be replicated to all machines for such large scenes. On smaller scenes we have verified that the performance is very close to rendering a fully replicated scene. In terms of scalability we have achieved a parallel efficiency of over 94% using up to 16 GPUs.
Název v anglickém jazyce
GPU Accelerated Path Tracing of Massive Scenes
Popis výsledku anglicky
This article presents a solution to path tracing of massive scenes on multiple GPUs. Our approach analyzes the memory access pattern of a path tracer and defines how the scene data should be distributed across up to 16 CPUs with minimal effect on performance. The key concept is that the parts of the scene that have the highest amount of memory accesses are replicated on all GPUs. We propose two methods for maximizing the performance of path tracing when working with partially distributed scene data. Both methods work on the memory management level and therefore path tracer data structures do not have to be redesigned, making our approach applicable to other path tracers with only minor changes in their code. As a proof of concept, we have enhanced the open-source Blender Cycles path tracer. The approach was validated on scenes of sizes up to 169 GB. We show that only 1 5% of the scene data needs to be replicated to all machines for such large scenes. On smaller scenes we have verified that the performance is very close to rendering a fully replicated scene. In terms of scalability we have achieved a parallel efficiency of over 94% using up to 16 GPUs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2018140" target="_blank" >LM2018140: e-Infrastruktura CZ</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACM Transactions on Graphics
ISSN
0730-0301
e-ISSN
—
Svazek periodika
40
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
—
Kód UT WoS článku
000667456500007
EID výsledku v databázi Scopus
2-s2.0-85108637389