Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

GPU Accelerated Path Tracing of Massive Scenes

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F21%3A10247663" target="_blank" >RIV/61989100:27740/21:10247663 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://dl.acm.org/doi/pdf/10.1145/3447807" target="_blank" >https://dl.acm.org/doi/pdf/10.1145/3447807</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3447807" target="_blank" >10.1145/3447807</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    GPU Accelerated Path Tracing of Massive Scenes

  • Popis výsledku v původním jazyce

    This article presents a solution to path tracing of massive scenes on multiple GPUs. Our approach analyzes the memory access pattern of a path tracer and defines how the scene data should be distributed across up to 16 CPUs with minimal effect on performance. The key concept is that the parts of the scene that have the highest amount of memory accesses are replicated on all GPUs. We propose two methods for maximizing the performance of path tracing when working with partially distributed scene data. Both methods work on the memory management level and therefore path tracer data structures do not have to be redesigned, making our approach applicable to other path tracers with only minor changes in their code. As a proof of concept, we have enhanced the open-source Blender Cycles path tracer. The approach was validated on scenes of sizes up to 169 GB. We show that only 1 5% of the scene data needs to be replicated to all machines for such large scenes. On smaller scenes we have verified that the performance is very close to rendering a fully replicated scene. In terms of scalability we have achieved a parallel efficiency of over 94% using up to 16 GPUs.

  • Název v anglickém jazyce

    GPU Accelerated Path Tracing of Massive Scenes

  • Popis výsledku anglicky

    This article presents a solution to path tracing of massive scenes on multiple GPUs. Our approach analyzes the memory access pattern of a path tracer and defines how the scene data should be distributed across up to 16 CPUs with minimal effect on performance. The key concept is that the parts of the scene that have the highest amount of memory accesses are replicated on all GPUs. We propose two methods for maximizing the performance of path tracing when working with partially distributed scene data. Both methods work on the memory management level and therefore path tracer data structures do not have to be redesigned, making our approach applicable to other path tracers with only minor changes in their code. As a proof of concept, we have enhanced the open-source Blender Cycles path tracer. The approach was validated on scenes of sizes up to 169 GB. We show that only 1 5% of the scene data needs to be replicated to all machines for such large scenes. On smaller scenes we have verified that the performance is very close to rendering a fully replicated scene. In terms of scalability we have achieved a parallel efficiency of over 94% using up to 16 GPUs.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LM2018140" target="_blank" >LM2018140: e-Infrastruktura CZ</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ACM Transactions on Graphics

  • ISSN

    0730-0301

  • e-ISSN

  • Svazek periodika

    40

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    17

  • Strana od-do

  • Kód UT WoS článku

    000667456500007

  • EID výsledku v databázi Scopus

    2-s2.0-85108637389