Highly Stable Single-Atom Modified MXenes as Cathode-Active Bifunctional Catalysts in Li-CO2 Battery
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F22%3A10250745" target="_blank" >RIV/61989100:27740/22:10250745 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27640/22:10250745
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202210218" target="_blank" >https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202210218</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/adfm.202210218" target="_blank" >10.1002/adfm.202210218</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Highly Stable Single-Atom Modified MXenes as Cathode-Active Bifunctional Catalysts in Li-CO2 Battery
Popis výsledku v původním jazyce
The exploration of cathode catalysts with low overpotentials for the carbon dioxide reduction reaction (CRR) and carbon dioxide evolution reaction (CER) is essential for Li-CO2 batteries. MXenes have been suggested as potential candidates owing to their high electrical conductivity and effective CO2 activation performance. Herein, the stability and bifunctional CRR/CER catalytic activities of bare MXene (M2C), oxygen-functionalized MXene (M2CO2), and single-atom (SA) modified M2CO2 are systemically investigated. Among bare MXenes, Mo2C exhibits the best catalytic activity, comparable to that of carbon nanotubes, whereas oxygen-functionalized MXene has poor activity. Notably, introducing an SA on the surface of oxygen-functionalized MXene decreases the overpotential by 12.2%-68.1%, which can even outperform graphene catalysts, suggesting their potential as bifunctional cathode catalysts in Li-CO2 batteries. This high activity is appropriate reactivity in origin, as highlighted by the volcano-type relationship between the Gibbs free energy and the overpotential for key steps. The descriptor xi, which is related to adsorption behavior, is effective in determining bifunctional catalytic activity, which depends on the ability of SA electrons to fill antibonding orbitals and SA-oxygen/carbon bonding. This work not only identifies promising MXene-based bifunctional CRR/CER catalysts but also provides a rational design rule for SA modified catalysts.
Název v anglickém jazyce
Highly Stable Single-Atom Modified MXenes as Cathode-Active Bifunctional Catalysts in Li-CO2 Battery
Popis výsledku anglicky
The exploration of cathode catalysts with low overpotentials for the carbon dioxide reduction reaction (CRR) and carbon dioxide evolution reaction (CER) is essential for Li-CO2 batteries. MXenes have been suggested as potential candidates owing to their high electrical conductivity and effective CO2 activation performance. Herein, the stability and bifunctional CRR/CER catalytic activities of bare MXene (M2C), oxygen-functionalized MXene (M2CO2), and single-atom (SA) modified M2CO2 are systemically investigated. Among bare MXenes, Mo2C exhibits the best catalytic activity, comparable to that of carbon nanotubes, whereas oxygen-functionalized MXene has poor activity. Notably, introducing an SA on the surface of oxygen-functionalized MXene decreases the overpotential by 12.2%-68.1%, which can even outperform graphene catalysts, suggesting their potential as bifunctional cathode catalysts in Li-CO2 batteries. This high activity is appropriate reactivity in origin, as highlighted by the volcano-type relationship between the Gibbs free energy and the overpotential for key steps. The descriptor xi, which is related to adsorption behavior, is effective in determining bifunctional catalytic activity, which depends on the ability of SA electrons to fill antibonding orbitals and SA-oxygen/carbon bonding. This work not only identifies promising MXene-based bifunctional CRR/CER catalysts but also provides a rational design rule for SA modified catalysts.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_013%2F0001791" target="_blank" >EF16_013/0001791: IT4Innovations národní superpočítačové centrum - cesta k exascale</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced Functional Materials
ISSN
1616-301X
e-ISSN
1616-3028
Svazek periodika
32
Číslo periodika v rámci svazku
48
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
13
Strana od-do
nestrankovano
Kód UT WoS článku
000862093700001
EID výsledku v databázi Scopus
2-s2.0-85139079134