Qualitative analysis, exact solutions and symmetry reduction for a generalized (2+1)-dimensional KP-MEW-Burgers equation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10254851" target="_blank" >RIV/61989100:27740/24:10254851 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S096007792400198X?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S096007792400198X?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.chaos.2024.114647" target="_blank" >10.1016/j.chaos.2024.114647</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Qualitative analysis, exact solutions and symmetry reduction for a generalized (2+1)-dimensional KP-MEW-Burgers equation
Popis výsledku v původním jazyce
The objective of this manuscript is to examine the non-linear characteristics of the modified equal width-Burgers equation, known as the generalized Kadomtsive-Petviashvili equation, and its ability to generate a long-wave with dispersion and dissipation in a nonlinear medium. We employ the Lie symmetry approach to reduce the dimension of the equation, resulting in an ordinary differential equation. Utilizing the newly developed generalized logistic equation method, we are able to derive solitary wave solutions for the aforementioned ordinary differential equation. In order to gain a deeper understanding of the physical implications of these solutions, we present them using various visual representations, such as 3D, 2D, density, and polar plots. Following this, we conduct a qualitative analysis of the dynamical systems and explore their chaotic behavior using bifurcation and chaos theory. To identify chaos within the systems, we utilize various chaos detection tools available in the existing literature. The results obtained from this study are novel and valuable for further investigation of the equation, providing guidance for future researchers. (C) 2024 Elsevier Ltd
Název v anglickém jazyce
Qualitative analysis, exact solutions and symmetry reduction for a generalized (2+1)-dimensional KP-MEW-Burgers equation
Popis výsledku anglicky
The objective of this manuscript is to examine the non-linear characteristics of the modified equal width-Burgers equation, known as the generalized Kadomtsive-Petviashvili equation, and its ability to generate a long-wave with dispersion and dissipation in a nonlinear medium. We employ the Lie symmetry approach to reduce the dimension of the equation, resulting in an ordinary differential equation. Utilizing the newly developed generalized logistic equation method, we are able to derive solitary wave solutions for the aforementioned ordinary differential equation. In order to gain a deeper understanding of the physical implications of these solutions, we present them using various visual representations, such as 3D, 2D, density, and polar plots. Following this, we conduct a qualitative analysis of the dynamical systems and explore their chaotic behavior using bifurcation and chaos theory. To identify chaos within the systems, we utilize various chaos detection tools available in the existing literature. The results obtained from this study are novel and valuable for further investigation of the equation, providing guidance for future researchers. (C) 2024 Elsevier Ltd
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chaos, Solitons & Fractals
ISSN
0960-0779
e-ISSN
—
Svazek periodika
181
Číslo periodika v rámci svazku
April
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
—
Kód UT WoS článku
001209206200001
EID výsledku v databázi Scopus
2-s2.0-85186504264