Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Investigation of the dynamical structures for nonlinear Vakhnenko-Parkes equation using two integration schemes

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255158" target="_blank" >RIV/61989100:27740/24:10255158 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s11082-024-06953-z" target="_blank" >https://link.springer.com/article/10.1007/s11082-024-06953-z</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11082-024-06953-z" target="_blank" >10.1007/s11082-024-06953-z</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Investigation of the dynamical structures for nonlinear Vakhnenko-Parkes equation using two integration schemes

  • Popis výsledku v původním jazyce

    The dynamic behavior of the Vakhnenko-Parkes equation is examined in this manuscript. This is an important subject because of its implications for comprehending intricate mathematical models describing traveling wave phenomena and solitons. The construction of traveling wave solutions for the Vakhnenko-Parkes equation in closed form is the main issue addressed in the study. The modified auxiliary equation approach and the extended (G &apos; / G2)-expansion method are used to address this because they are effective in producing precise solutions of a large class of nonlinear partial differential equations. A visual component to comprehending the behavior of the equation is added by employing 3D-surface graphs, 2D-line graphs, and contour plots to explore these solutions graphically. A variety of traveling wave behavior is observed from the obtained solutions. These results imply that the Vakhnenko-Parkes equation and its solutions are complex, offering important insights into the underlying dynamics. The proposed techniques are applied for the first time to study the considered model in this work. A comparison of the obtained results with the previous works is presented to confirm the significance and novelty of the reported results.

  • Název v anglickém jazyce

    Investigation of the dynamical structures for nonlinear Vakhnenko-Parkes equation using two integration schemes

  • Popis výsledku anglicky

    The dynamic behavior of the Vakhnenko-Parkes equation is examined in this manuscript. This is an important subject because of its implications for comprehending intricate mathematical models describing traveling wave phenomena and solitons. The construction of traveling wave solutions for the Vakhnenko-Parkes equation in closed form is the main issue addressed in the study. The modified auxiliary equation approach and the extended (G &apos; / G2)-expansion method are used to address this because they are effective in producing precise solutions of a large class of nonlinear partial differential equations. A visual component to comprehending the behavior of the equation is added by employing 3D-surface graphs, 2D-line graphs, and contour plots to explore these solutions graphically. A variety of traveling wave behavior is observed from the obtained solutions. These results imply that the Vakhnenko-Parkes equation and its solutions are complex, offering important insights into the underlying dynamics. The proposed techniques are applied for the first time to study the considered model in this work. A comparison of the obtained results with the previous works is presented to confirm the significance and novelty of the reported results.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10300 - Physical sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Optical And Quantum Electronics

  • ISSN

    0306-8919

  • e-ISSN

    1572-817X

  • Svazek periodika

    56

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    23

  • Strana od-do

  • Kód UT WoS článku

    001221745400009

  • EID výsledku v databázi Scopus

    2-s2.0-85192919021