Investigation of the dynamical structures for nonlinear Vakhnenko-Parkes equation using two integration schemes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255158" target="_blank" >RIV/61989100:27740/24:10255158 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s11082-024-06953-z" target="_blank" >https://link.springer.com/article/10.1007/s11082-024-06953-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11082-024-06953-z" target="_blank" >10.1007/s11082-024-06953-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Investigation of the dynamical structures for nonlinear Vakhnenko-Parkes equation using two integration schemes
Popis výsledku v původním jazyce
The dynamic behavior of the Vakhnenko-Parkes equation is examined in this manuscript. This is an important subject because of its implications for comprehending intricate mathematical models describing traveling wave phenomena and solitons. The construction of traveling wave solutions for the Vakhnenko-Parkes equation in closed form is the main issue addressed in the study. The modified auxiliary equation approach and the extended (G ' / G2)-expansion method are used to address this because they are effective in producing precise solutions of a large class of nonlinear partial differential equations. A visual component to comprehending the behavior of the equation is added by employing 3D-surface graphs, 2D-line graphs, and contour plots to explore these solutions graphically. A variety of traveling wave behavior is observed from the obtained solutions. These results imply that the Vakhnenko-Parkes equation and its solutions are complex, offering important insights into the underlying dynamics. The proposed techniques are applied for the first time to study the considered model in this work. A comparison of the obtained results with the previous works is presented to confirm the significance and novelty of the reported results.
Název v anglickém jazyce
Investigation of the dynamical structures for nonlinear Vakhnenko-Parkes equation using two integration schemes
Popis výsledku anglicky
The dynamic behavior of the Vakhnenko-Parkes equation is examined in this manuscript. This is an important subject because of its implications for comprehending intricate mathematical models describing traveling wave phenomena and solitons. The construction of traveling wave solutions for the Vakhnenko-Parkes equation in closed form is the main issue addressed in the study. The modified auxiliary equation approach and the extended (G ' / G2)-expansion method are used to address this because they are effective in producing precise solutions of a large class of nonlinear partial differential equations. A visual component to comprehending the behavior of the equation is added by employing 3D-surface graphs, 2D-line graphs, and contour plots to explore these solutions graphically. A variety of traveling wave behavior is observed from the obtained solutions. These results imply that the Vakhnenko-Parkes equation and its solutions are complex, offering important insights into the underlying dynamics. The proposed techniques are applied for the first time to study the considered model in this work. A comparison of the obtained results with the previous works is presented to confirm the significance and novelty of the reported results.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Optical And Quantum Electronics
ISSN
0306-8919
e-ISSN
1572-817X
Svazek periodika
56
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
23
Strana od-do
—
Kód UT WoS článku
001221745400009
EID výsledku v databázi Scopus
2-s2.0-85192919021