Analytical insights into the (3+1)-dimensional Boussinesq equation: A dynamical study of interaction solitons
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255714" target="_blank" >RIV/61989100:27740/24:10255714 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2211379724004741" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2211379724004741</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.rinp.2024.107790" target="_blank" >10.1016/j.rinp.2024.107790</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analytical insights into the (3+1)-dimensional Boussinesq equation: A dynamical study of interaction solitons
Popis výsledku v původním jazyce
The Boussinesq equation has drawn significant interest in models for coastline and oceanic engineering, as it can simulate various phenomena such as shallow water waves and harbors, tsunami transmission, and near-shore wave mechanisms. This study examines different approaches for solving the (3+1)-dimensional integrable Boussinesq equation. For this purpose, the Bäcklund transformation is derived by utilizing the Hirota bilinear representation. The understanding of the equation is improved by this transformation, which yields solutions for exponential functions. Furthermore, the model's bilinear form is used to construct its two-, three-, and multi-wave solutions. The features and behavior of the wave solutions to the equation are clarified by this investigation. Additionally, the concerned equation is transformed into an ordinary differential equation by means of a traveling wave transformation, and the results consisting of solutions for rational and polynomial functions are extracted by means of the unified technique. The graphical representations are an essential visual assistance for comprehending the intricate dynamics and behaviors displayed by the governing equation's solutions. (C) 2024 The Author(s)
Název v anglickém jazyce
Analytical insights into the (3+1)-dimensional Boussinesq equation: A dynamical study of interaction solitons
Popis výsledku anglicky
The Boussinesq equation has drawn significant interest in models for coastline and oceanic engineering, as it can simulate various phenomena such as shallow water waves and harbors, tsunami transmission, and near-shore wave mechanisms. This study examines different approaches for solving the (3+1)-dimensional integrable Boussinesq equation. For this purpose, the Bäcklund transformation is derived by utilizing the Hirota bilinear representation. The understanding of the equation is improved by this transformation, which yields solutions for exponential functions. Furthermore, the model's bilinear form is used to construct its two-, three-, and multi-wave solutions. The features and behavior of the wave solutions to the equation are clarified by this investigation. Additionally, the concerned equation is transformed into an ordinary differential equation by means of a traveling wave transformation, and the results consisting of solutions for rational and polynomial functions are extracted by means of the unified technique. The graphical representations are an essential visual assistance for comprehending the intricate dynamics and behaviors displayed by the governing equation's solutions. (C) 2024 The Author(s)
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Results in Physics
ISSN
2211-3797
e-ISSN
2211-3797
Svazek periodika
61
Číslo periodika v rámci svazku
June
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85194364522