Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Analyzing coupled-wave dynamics: lump, breather, two-wave and three-wave interactions in a (3+1)-dimensional generalized KdV equation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255727" target="_blank" >RIV/61989100:27740/24:10255727 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s11071-024-10199-5" target="_blank" >https://link.springer.com/article/10.1007/s11071-024-10199-5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11071-024-10199-5" target="_blank" >10.1007/s11071-024-10199-5</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Analyzing coupled-wave dynamics: lump, breather, two-wave and three-wave interactions in a (3+1)-dimensional generalized KdV equation

  • Popis výsledku v původním jazyce

    In this study, we particularly address the generalized (3+1)-dimensional Kortewegde Vries (KdV) problem as one variation of the KdV equation. This equation can be utilized to simulate a wide range of physical events in a variety of domains, such as nonlinear optics, fluid dynamics, plasma physics, and other fields where coupled wave dynamics are significant. We first construct a Hirota bilinear form for the generalized KdV equation, and then we derive two different B &amp; auml;cklund transformations (BT). The first B &amp; auml;cklund transformation includes eleven arbitrary parameters, while the second form contains eight parameters. Rational and exponential traveling wave solutions with random wave numbers are found based on the suggested bilinear B &amp; auml;cklund transformation. These solutions of the rational and exponential functions lead to the formation of dark and bright solitons. Moreover, we utilize the bilinear form of the equation to fully comprehend the behavior of lump-kink, breather, rogue, two-wave, three-wave, and multi-wave solutions. In-depth numerical simulations using 3-D profiles and contour plots are carried out while carefully taking into account relevant parameter values, offering more insights into the unique characteristics of the solutions that are obtained. Our results demonstrate the effectiveness and efficiency of the method used to obtain analytical solutions for nonlinear partial differential equations.

  • Název v anglickém jazyce

    Analyzing coupled-wave dynamics: lump, breather, two-wave and three-wave interactions in a (3+1)-dimensional generalized KdV equation

  • Popis výsledku anglicky

    In this study, we particularly address the generalized (3+1)-dimensional Kortewegde Vries (KdV) problem as one variation of the KdV equation. This equation can be utilized to simulate a wide range of physical events in a variety of domains, such as nonlinear optics, fluid dynamics, plasma physics, and other fields where coupled wave dynamics are significant. We first construct a Hirota bilinear form for the generalized KdV equation, and then we derive two different B &amp; auml;cklund transformations (BT). The first B &amp; auml;cklund transformation includes eleven arbitrary parameters, while the second form contains eight parameters. Rational and exponential traveling wave solutions with random wave numbers are found based on the suggested bilinear B &amp; auml;cklund transformation. These solutions of the rational and exponential functions lead to the formation of dark and bright solitons. Moreover, we utilize the bilinear form of the equation to fully comprehend the behavior of lump-kink, breather, rogue, two-wave, three-wave, and multi-wave solutions. In-depth numerical simulations using 3-D profiles and contour plots are carried out while carefully taking into account relevant parameter values, offering more insights into the unique characteristics of the solutions that are obtained. Our results demonstrate the effectiveness and efficiency of the method used to obtain analytical solutions for nonlinear partial differential equations.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10100 - Mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    O - Projekt operacniho programu

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Nonlinear Dynamics

  • ISSN

    0924-090X

  • e-ISSN

    1573-269X

  • Svazek periodika

    112

  • Číslo periodika v rámci svazku

    24

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    19

  • Strana od-do

    22323-22341

  • Kód UT WoS článku

    001314169000007

  • EID výsledku v databázi Scopus

    2-s2.0-85203964568