Analyzing coupled-wave dynamics: lump, breather, two-wave and three-wave interactions in a (3+1)-dimensional generalized KdV equation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255727" target="_blank" >RIV/61989100:27740/24:10255727 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s11071-024-10199-5" target="_blank" >https://link.springer.com/article/10.1007/s11071-024-10199-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11071-024-10199-5" target="_blank" >10.1007/s11071-024-10199-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analyzing coupled-wave dynamics: lump, breather, two-wave and three-wave interactions in a (3+1)-dimensional generalized KdV equation
Popis výsledku v původním jazyce
In this study, we particularly address the generalized (3+1)-dimensional Kortewegde Vries (KdV) problem as one variation of the KdV equation. This equation can be utilized to simulate a wide range of physical events in a variety of domains, such as nonlinear optics, fluid dynamics, plasma physics, and other fields where coupled wave dynamics are significant. We first construct a Hirota bilinear form for the generalized KdV equation, and then we derive two different B & auml;cklund transformations (BT). The first B & auml;cklund transformation includes eleven arbitrary parameters, while the second form contains eight parameters. Rational and exponential traveling wave solutions with random wave numbers are found based on the suggested bilinear B & auml;cklund transformation. These solutions of the rational and exponential functions lead to the formation of dark and bright solitons. Moreover, we utilize the bilinear form of the equation to fully comprehend the behavior of lump-kink, breather, rogue, two-wave, three-wave, and multi-wave solutions. In-depth numerical simulations using 3-D profiles and contour plots are carried out while carefully taking into account relevant parameter values, offering more insights into the unique characteristics of the solutions that are obtained. Our results demonstrate the effectiveness and efficiency of the method used to obtain analytical solutions for nonlinear partial differential equations.
Název v anglickém jazyce
Analyzing coupled-wave dynamics: lump, breather, two-wave and three-wave interactions in a (3+1)-dimensional generalized KdV equation
Popis výsledku anglicky
In this study, we particularly address the generalized (3+1)-dimensional Kortewegde Vries (KdV) problem as one variation of the KdV equation. This equation can be utilized to simulate a wide range of physical events in a variety of domains, such as nonlinear optics, fluid dynamics, plasma physics, and other fields where coupled wave dynamics are significant. We first construct a Hirota bilinear form for the generalized KdV equation, and then we derive two different B & auml;cklund transformations (BT). The first B & auml;cklund transformation includes eleven arbitrary parameters, while the second form contains eight parameters. Rational and exponential traveling wave solutions with random wave numbers are found based on the suggested bilinear B & auml;cklund transformation. These solutions of the rational and exponential functions lead to the formation of dark and bright solitons. Moreover, we utilize the bilinear form of the equation to fully comprehend the behavior of lump-kink, breather, rogue, two-wave, three-wave, and multi-wave solutions. In-depth numerical simulations using 3-D profiles and contour plots are carried out while carefully taking into account relevant parameter values, offering more insights into the unique characteristics of the solutions that are obtained. Our results demonstrate the effectiveness and efficiency of the method used to obtain analytical solutions for nonlinear partial differential equations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nonlinear Dynamics
ISSN
0924-090X
e-ISSN
1573-269X
Svazek periodika
112
Číslo periodika v rámci svazku
24
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
22323-22341
Kód UT WoS článku
001314169000007
EID výsledku v databázi Scopus
2-s2.0-85203964568