Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Optimization of micro-rotation effect on magnetohydrodynamic nanofluid flow with artificial neural network

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255610" target="_blank" >RIV/61989100:27740/24:10255610 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://onlinelibrary.wiley.com/doi/10.1002/zamm.202300498" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/zamm.202300498</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/zamm.202300498" target="_blank" >10.1002/zamm.202300498</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Optimization of micro-rotation effect on magnetohydrodynamic nanofluid flow with artificial neural network

  • Popis výsledku v původním jazyce

    It is a major research area in mathematics, physics, engineering, and computer science to study the heat and mass transfer properties of flow. Suspensions containing multiple nanoparticles or nanocomposites have recently gained a wide range of applications in biological research and clinical trials under certain conditions. Nanofluids are important suspensions that allow nanoparticles to disseminate and behave in a homogeneous and stable environment. Therefore, here magnetohydrodynamic micropolar nanofluid flow towards the stretching surface with artificial neural network has been considered. In this study, radiation and heat source phenomena have been presented in heat convection. Brownian and thermophoresis effects and micro-rotational particles are also taking into account. The non-linear simplified equations have been calculated numerically via Runge-Kutta fourth-order shooting process. The calculation of the Sherwood number, Nusselt number, couple stress coefficient, and skin friction coefficient has been conducted utilizing diverse parameters. Furthermore, the outcomes have been employed to create four distinct artificial neural networks. Our observation indicates that an increase in the heat source quantity (Formula presented.) leads to a rise in heat generation, resulting in a greater total heat output and an increase in the temperature field. Coefficient of determination &quot;R&quot; values higher than 0.99 have been obtained for the artificial neural network models. The obtained findings have shown that artificial neural networks can predict thermal parameters with high accuracy. (C) 2024 Wiley-VCH GmbH.

  • Název v anglickém jazyce

    Optimization of micro-rotation effect on magnetohydrodynamic nanofluid flow with artificial neural network

  • Popis výsledku anglicky

    It is a major research area in mathematics, physics, engineering, and computer science to study the heat and mass transfer properties of flow. Suspensions containing multiple nanoparticles or nanocomposites have recently gained a wide range of applications in biological research and clinical trials under certain conditions. Nanofluids are important suspensions that allow nanoparticles to disseminate and behave in a homogeneous and stable environment. Therefore, here magnetohydrodynamic micropolar nanofluid flow towards the stretching surface with artificial neural network has been considered. In this study, radiation and heat source phenomena have been presented in heat convection. Brownian and thermophoresis effects and micro-rotational particles are also taking into account. The non-linear simplified equations have been calculated numerically via Runge-Kutta fourth-order shooting process. The calculation of the Sherwood number, Nusselt number, couple stress coefficient, and skin friction coefficient has been conducted utilizing diverse parameters. Furthermore, the outcomes have been employed to create four distinct artificial neural networks. Our observation indicates that an increase in the heat source quantity (Formula presented.) leads to a rise in heat generation, resulting in a greater total heat output and an increase in the temperature field. Coefficient of determination &quot;R&quot; values higher than 0.99 have been obtained for the artificial neural network models. The obtained findings have shown that artificial neural networks can predict thermal parameters with high accuracy. (C) 2024 Wiley-VCH GmbH.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    O - Projekt operacniho programu

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik

  • ISSN

    0044-2267

  • e-ISSN

  • Svazek periodika

    104

  • Číslo periodika v rámci svazku

    8

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    19

  • Strana od-do

  • Kód UT WoS článku

    001247876600001

  • EID výsledku v databázi Scopus

    2-s2.0-85196005247