Optimization of micro-rotation effect on magnetohydrodynamic nanofluid flow with artificial neural network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255610" target="_blank" >RIV/61989100:27740/24:10255610 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/10.1002/zamm.202300498" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/zamm.202300498</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/zamm.202300498" target="_blank" >10.1002/zamm.202300498</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimization of micro-rotation effect on magnetohydrodynamic nanofluid flow with artificial neural network
Popis výsledku v původním jazyce
It is a major research area in mathematics, physics, engineering, and computer science to study the heat and mass transfer properties of flow. Suspensions containing multiple nanoparticles or nanocomposites have recently gained a wide range of applications in biological research and clinical trials under certain conditions. Nanofluids are important suspensions that allow nanoparticles to disseminate and behave in a homogeneous and stable environment. Therefore, here magnetohydrodynamic micropolar nanofluid flow towards the stretching surface with artificial neural network has been considered. In this study, radiation and heat source phenomena have been presented in heat convection. Brownian and thermophoresis effects and micro-rotational particles are also taking into account. The non-linear simplified equations have been calculated numerically via Runge-Kutta fourth-order shooting process. The calculation of the Sherwood number, Nusselt number, couple stress coefficient, and skin friction coefficient has been conducted utilizing diverse parameters. Furthermore, the outcomes have been employed to create four distinct artificial neural networks. Our observation indicates that an increase in the heat source quantity (Formula presented.) leads to a rise in heat generation, resulting in a greater total heat output and an increase in the temperature field. Coefficient of determination "R" values higher than 0.99 have been obtained for the artificial neural network models. The obtained findings have shown that artificial neural networks can predict thermal parameters with high accuracy. (C) 2024 Wiley-VCH GmbH.
Název v anglickém jazyce
Optimization of micro-rotation effect on magnetohydrodynamic nanofluid flow with artificial neural network
Popis výsledku anglicky
It is a major research area in mathematics, physics, engineering, and computer science to study the heat and mass transfer properties of flow. Suspensions containing multiple nanoparticles or nanocomposites have recently gained a wide range of applications in biological research and clinical trials under certain conditions. Nanofluids are important suspensions that allow nanoparticles to disseminate and behave in a homogeneous and stable environment. Therefore, here magnetohydrodynamic micropolar nanofluid flow towards the stretching surface with artificial neural network has been considered. In this study, radiation and heat source phenomena have been presented in heat convection. Brownian and thermophoresis effects and micro-rotational particles are also taking into account. The non-linear simplified equations have been calculated numerically via Runge-Kutta fourth-order shooting process. The calculation of the Sherwood number, Nusselt number, couple stress coefficient, and skin friction coefficient has been conducted utilizing diverse parameters. Furthermore, the outcomes have been employed to create four distinct artificial neural networks. Our observation indicates that an increase in the heat source quantity (Formula presented.) leads to a rise in heat generation, resulting in a greater total heat output and an increase in the temperature field. Coefficient of determination "R" values higher than 0.99 have been obtained for the artificial neural network models. The obtained findings have shown that artificial neural networks can predict thermal parameters with high accuracy. (C) 2024 Wiley-VCH GmbH.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik
ISSN
0044-2267
e-ISSN
—
Svazek periodika
104
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
19
Strana od-do
—
Kód UT WoS článku
001247876600001
EID výsledku v databázi Scopus
2-s2.0-85196005247