Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The study of phase portraits, multistability visualization, Lyapunov exponents and chaos identification of coupled nonlinear volatility and option pricing model

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255692" target="_blank" >RIV/61989100:27740/24:10255692 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1140/epjp/s13360-024-05435-1" target="_blank" >https://link.springer.com/article/10.1140/epjp/s13360-024-05435-1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1140/epjp/s13360-024-05435-1" target="_blank" >10.1140/epjp/s13360-024-05435-1</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The study of phase portraits, multistability visualization, Lyapunov exponents and chaos identification of coupled nonlinear volatility and option pricing model

  • Popis výsledku v původním jazyce

    In this study, the coupled nonlinear volatility and option pricing model is examined. A leverage effect is produced, indicating a negative correlation between stock returns and volatility, and a confined Brownian motion linked to the nonlinear Schrödinger equation is exhibited. This model is considered a coupled nonlinear wave substitute for the Black-Scholes option pricing model. A mathematical strategy is introduced to comprehend market price fluctuations for the suggested model. Consequently, the necessary parameters for the existence of these solutions are revealed. The obtained numerical results of market price are discussed through graphs to illustrate and validate the theoretical findings. The generalized mapping approach of Riccati equations is applied to the model under consideration. Several periodic and singular soliton solutions are successfully constructed for the model. When appropriate parameters are chosen, both 2- and 3-dimensional plots that graphically represent some of the observed waveform solutions are included. Additionally, bifurcation, chaotic analysis, Lyapunov exponents, and multi-stability are performed to gain deeper insights into the related dynamical system. Phase portraits of market price fluctuations are shown for various parametric values of the corresponding dynamical system and at the equilibrium points. The results demonstrate that slight changes in initial conditions lead to price fluctuations in the model. (C) The Author(s), under exclusive licence to Societa Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2024.

  • Název v anglickém jazyce

    The study of phase portraits, multistability visualization, Lyapunov exponents and chaos identification of coupled nonlinear volatility and option pricing model

  • Popis výsledku anglicky

    In this study, the coupled nonlinear volatility and option pricing model is examined. A leverage effect is produced, indicating a negative correlation between stock returns and volatility, and a confined Brownian motion linked to the nonlinear Schrödinger equation is exhibited. This model is considered a coupled nonlinear wave substitute for the Black-Scholes option pricing model. A mathematical strategy is introduced to comprehend market price fluctuations for the suggested model. Consequently, the necessary parameters for the existence of these solutions are revealed. The obtained numerical results of market price are discussed through graphs to illustrate and validate the theoretical findings. The generalized mapping approach of Riccati equations is applied to the model under consideration. Several periodic and singular soliton solutions are successfully constructed for the model. When appropriate parameters are chosen, both 2- and 3-dimensional plots that graphically represent some of the observed waveform solutions are included. Additionally, bifurcation, chaotic analysis, Lyapunov exponents, and multi-stability are performed to gain deeper insights into the related dynamical system. Phase portraits of market price fluctuations are shown for various parametric values of the corresponding dynamical system and at the equilibrium points. The results demonstrate that slight changes in initial conditions lead to price fluctuations in the model. (C) The Author(s), under exclusive licence to Societa Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2024.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    O - Projekt operacniho programu

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    European Physical Journal Plus

  • ISSN

    2190-5444

  • e-ISSN

  • Svazek periodika

    139

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    21

  • Strana od-do

  • Kód UT WoS článku

    001277799300007

  • EID výsledku v databázi Scopus

    2-s2.0-85199780507