The study of phase portraits, multistability visualization, Lyapunov exponents and chaos identification of coupled nonlinear volatility and option pricing model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255692" target="_blank" >RIV/61989100:27740/24:10255692 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1140/epjp/s13360-024-05435-1" target="_blank" >https://link.springer.com/article/10.1140/epjp/s13360-024-05435-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1140/epjp/s13360-024-05435-1" target="_blank" >10.1140/epjp/s13360-024-05435-1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The study of phase portraits, multistability visualization, Lyapunov exponents and chaos identification of coupled nonlinear volatility and option pricing model
Popis výsledku v původním jazyce
In this study, the coupled nonlinear volatility and option pricing model is examined. A leverage effect is produced, indicating a negative correlation between stock returns and volatility, and a confined Brownian motion linked to the nonlinear Schrödinger equation is exhibited. This model is considered a coupled nonlinear wave substitute for the Black-Scholes option pricing model. A mathematical strategy is introduced to comprehend market price fluctuations for the suggested model. Consequently, the necessary parameters for the existence of these solutions are revealed. The obtained numerical results of market price are discussed through graphs to illustrate and validate the theoretical findings. The generalized mapping approach of Riccati equations is applied to the model under consideration. Several periodic and singular soliton solutions are successfully constructed for the model. When appropriate parameters are chosen, both 2- and 3-dimensional plots that graphically represent some of the observed waveform solutions are included. Additionally, bifurcation, chaotic analysis, Lyapunov exponents, and multi-stability are performed to gain deeper insights into the related dynamical system. Phase portraits of market price fluctuations are shown for various parametric values of the corresponding dynamical system and at the equilibrium points. The results demonstrate that slight changes in initial conditions lead to price fluctuations in the model. (C) The Author(s), under exclusive licence to Societa Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2024.
Název v anglickém jazyce
The study of phase portraits, multistability visualization, Lyapunov exponents and chaos identification of coupled nonlinear volatility and option pricing model
Popis výsledku anglicky
In this study, the coupled nonlinear volatility and option pricing model is examined. A leverage effect is produced, indicating a negative correlation between stock returns and volatility, and a confined Brownian motion linked to the nonlinear Schrödinger equation is exhibited. This model is considered a coupled nonlinear wave substitute for the Black-Scholes option pricing model. A mathematical strategy is introduced to comprehend market price fluctuations for the suggested model. Consequently, the necessary parameters for the existence of these solutions are revealed. The obtained numerical results of market price are discussed through graphs to illustrate and validate the theoretical findings. The generalized mapping approach of Riccati equations is applied to the model under consideration. Several periodic and singular soliton solutions are successfully constructed for the model. When appropriate parameters are chosen, both 2- and 3-dimensional plots that graphically represent some of the observed waveform solutions are included. Additionally, bifurcation, chaotic analysis, Lyapunov exponents, and multi-stability are performed to gain deeper insights into the related dynamical system. Phase portraits of market price fluctuations are shown for various parametric values of the corresponding dynamical system and at the equilibrium points. The results demonstrate that slight changes in initial conditions lead to price fluctuations in the model. (C) The Author(s), under exclusive licence to Societa Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2024.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Physical Journal Plus
ISSN
2190-5444
e-ISSN
—
Svazek periodika
139
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
21
Strana od-do
—
Kód UT WoS článku
001277799300007
EID výsledku v databázi Scopus
2-s2.0-85199780507