Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Ferroelectric frontiers: Navigating phase portraits, chaos, multistability and sensitivity in thin-film dynamics

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255720" target="_blank" >RIV/61989100:27740/24:10255720 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0960077924010920" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0960077924010920</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.chaos.2024.115540" target="_blank" >10.1016/j.chaos.2024.115540</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Ferroelectric frontiers: Navigating phase portraits, chaos, multistability and sensitivity in thin-film dynamics

  • Popis výsledku v původním jazyce

    This research includes the study of the non-linear dynamics of thin-film ferroelectric materials governed by an equation of wave dynamics within the material. This equation plays a key role in both physics and the study of aqueous flow. The work is planned as examining the symmetries group analysis drops, studying the dynamical system features through bifurcation phase portraits, and carrying dynamic phenomena in chaos theory. Diverse techniques are taken, such as Lyapunov exponent, 2D, and 3D phase portraits, Poincar &amp; eacute; maps, time series analysis, and sensitivity to multistability under the different conditions of the initial state. In addition, the study involves using the extended hyperbolic function method to obtain the general analytical solutions via which various kinds of solitary wave solutions are produced including trigonometric and hyperbolic functions and periodic, bright, and singular soliton solutions. These solutions are followed by a list of constraint conditions in the form of equations. Visual data of 2D, 3D, and contour plots are presented, with parameters carefully set to reflect various scenarios. Sensitivity analysis is performed using alternative initial conditions, and stability analysis is demonstrated graphically. To fully grasp the dynamic features of these systems and accurately predict outcomes, it is essential to advance new technologies and methodologies that can further enhance our understanding and predictive capabilities in complex systems.

  • Název v anglickém jazyce

    Ferroelectric frontiers: Navigating phase portraits, chaos, multistability and sensitivity in thin-film dynamics

  • Popis výsledku anglicky

    This research includes the study of the non-linear dynamics of thin-film ferroelectric materials governed by an equation of wave dynamics within the material. This equation plays a key role in both physics and the study of aqueous flow. The work is planned as examining the symmetries group analysis drops, studying the dynamical system features through bifurcation phase portraits, and carrying dynamic phenomena in chaos theory. Diverse techniques are taken, such as Lyapunov exponent, 2D, and 3D phase portraits, Poincar &amp; eacute; maps, time series analysis, and sensitivity to multistability under the different conditions of the initial state. In addition, the study involves using the extended hyperbolic function method to obtain the general analytical solutions via which various kinds of solitary wave solutions are produced including trigonometric and hyperbolic functions and periodic, bright, and singular soliton solutions. These solutions are followed by a list of constraint conditions in the form of equations. Visual data of 2D, 3D, and contour plots are presented, with parameters carefully set to reflect various scenarios. Sensitivity analysis is performed using alternative initial conditions, and stability analysis is demonstrated graphically. To fully grasp the dynamic features of these systems and accurately predict outcomes, it is essential to advance new technologies and methodologies that can further enhance our understanding and predictive capabilities in complex systems.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10100 - Mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    O - Projekt operacniho programu

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Chaos, Solitons &amp; Fractals

  • ISSN

    0960-0779

  • e-ISSN

    1873-2887

  • Svazek periodika

    188

  • Číslo periodika v rámci svazku

    November

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    12

  • Strana od-do

  • Kód UT WoS článku

    001318425600001

  • EID výsledku v databázi Scopus

    2-s2.0-85203879416