Ferroelectric frontiers: Navigating phase portraits, chaos, multistability and sensitivity in thin-film dynamics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255720" target="_blank" >RIV/61989100:27740/24:10255720 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0960077924010920" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0960077924010920</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.chaos.2024.115540" target="_blank" >10.1016/j.chaos.2024.115540</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Ferroelectric frontiers: Navigating phase portraits, chaos, multistability and sensitivity in thin-film dynamics
Popis výsledku v původním jazyce
This research includes the study of the non-linear dynamics of thin-film ferroelectric materials governed by an equation of wave dynamics within the material. This equation plays a key role in both physics and the study of aqueous flow. The work is planned as examining the symmetries group analysis drops, studying the dynamical system features through bifurcation phase portraits, and carrying dynamic phenomena in chaos theory. Diverse techniques are taken, such as Lyapunov exponent, 2D, and 3D phase portraits, Poincar & eacute; maps, time series analysis, and sensitivity to multistability under the different conditions of the initial state. In addition, the study involves using the extended hyperbolic function method to obtain the general analytical solutions via which various kinds of solitary wave solutions are produced including trigonometric and hyperbolic functions and periodic, bright, and singular soliton solutions. These solutions are followed by a list of constraint conditions in the form of equations. Visual data of 2D, 3D, and contour plots are presented, with parameters carefully set to reflect various scenarios. Sensitivity analysis is performed using alternative initial conditions, and stability analysis is demonstrated graphically. To fully grasp the dynamic features of these systems and accurately predict outcomes, it is essential to advance new technologies and methodologies that can further enhance our understanding and predictive capabilities in complex systems.
Název v anglickém jazyce
Ferroelectric frontiers: Navigating phase portraits, chaos, multistability and sensitivity in thin-film dynamics
Popis výsledku anglicky
This research includes the study of the non-linear dynamics of thin-film ferroelectric materials governed by an equation of wave dynamics within the material. This equation plays a key role in both physics and the study of aqueous flow. The work is planned as examining the symmetries group analysis drops, studying the dynamical system features through bifurcation phase portraits, and carrying dynamic phenomena in chaos theory. Diverse techniques are taken, such as Lyapunov exponent, 2D, and 3D phase portraits, Poincar & eacute; maps, time series analysis, and sensitivity to multistability under the different conditions of the initial state. In addition, the study involves using the extended hyperbolic function method to obtain the general analytical solutions via which various kinds of solitary wave solutions are produced including trigonometric and hyperbolic functions and periodic, bright, and singular soliton solutions. These solutions are followed by a list of constraint conditions in the form of equations. Visual data of 2D, 3D, and contour plots are presented, with parameters carefully set to reflect various scenarios. Sensitivity analysis is performed using alternative initial conditions, and stability analysis is demonstrated graphically. To fully grasp the dynamic features of these systems and accurately predict outcomes, it is essential to advance new technologies and methodologies that can further enhance our understanding and predictive capabilities in complex systems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chaos, Solitons & Fractals
ISSN
0960-0779
e-ISSN
1873-2887
Svazek periodika
188
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
—
Kód UT WoS článku
001318425600001
EID výsledku v databázi Scopus
2-s2.0-85203879416