A complete dynamical analysis of discrete electric lattice coupled with modified Zakharov-Kuznetsov equation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255728" target="_blank" >RIV/61989100:27740/24:10255728 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S266681812400264X" target="_blank" >https://www.sciencedirect.com/science/article/pii/S266681812400264X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.padiff.2024.100878" target="_blank" >10.1016/j.padiff.2024.100878</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A complete dynamical analysis of discrete electric lattice coupled with modified Zakharov-Kuznetsov equation
Popis výsledku v původním jazyce
The behavior of nonlinear waves within a modified Zakharov-Kuznetsov equation and their interactions with discrete electric lattice structures are examined in this study. The ϕ6MINUS SIGN model expansion method is utilized to acquire substantial knowledge into the complex dynamics of the system under consideration, particularly with regard to the discrete electric lattice and analytical electrical solitons. By incorporating higher-order effects and improving accuracy in representing specific physical conditions, the study achieves a more realistic portrayal of nonlinear wave dynamics. The investigation also sheds light on the relationship between non-linearity, discreteness, and equation dynamics by exploring the conditions that lead to the formation of solitons and other nonlinear structures. In addition, a unique set of electrical solitons is defined to explore dynamic behaviors such as chaotic, quasi-periodic, and periodic motions under various parameterized conditions, including an external damping force. Phase plane analysis is visualized by using dynamic structure 3D and 2D phase plots, is used for bifurcation and sensitivity inspections. Finally, time series graphs are offered as mathematical depictions of solitary waves, and Lyapunov exponents with real and complex eigenvalues are used to study the stability and chaotic behaviors of the system. (C) 2024 The Author(s)
Název v anglickém jazyce
A complete dynamical analysis of discrete electric lattice coupled with modified Zakharov-Kuznetsov equation
Popis výsledku anglicky
The behavior of nonlinear waves within a modified Zakharov-Kuznetsov equation and their interactions with discrete electric lattice structures are examined in this study. The ϕ6MINUS SIGN model expansion method is utilized to acquire substantial knowledge into the complex dynamics of the system under consideration, particularly with regard to the discrete electric lattice and analytical electrical solitons. By incorporating higher-order effects and improving accuracy in representing specific physical conditions, the study achieves a more realistic portrayal of nonlinear wave dynamics. The investigation also sheds light on the relationship between non-linearity, discreteness, and equation dynamics by exploring the conditions that lead to the formation of solitons and other nonlinear structures. In addition, a unique set of electrical solitons is defined to explore dynamic behaviors such as chaotic, quasi-periodic, and periodic motions under various parameterized conditions, including an external damping force. Phase plane analysis is visualized by using dynamic structure 3D and 2D phase plots, is used for bifurcation and sensitivity inspections. Finally, time series graphs are offered as mathematical depictions of solitary waves, and Lyapunov exponents with real and complex eigenvalues are used to study the stability and chaotic behaviors of the system. (C) 2024 The Author(s)
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Partial Differential Equations in Applied Mathematics
ISSN
2666-8181
e-ISSN
2666-8181
Svazek periodika
11
Číslo periodika v rámci svazku
September
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85201507593