Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A complete dynamical analysis of discrete electric lattice coupled with modified Zakharov-Kuznetsov equation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10255728" target="_blank" >RIV/61989100:27740/24:10255728 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S266681812400264X" target="_blank" >https://www.sciencedirect.com/science/article/pii/S266681812400264X</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.padiff.2024.100878" target="_blank" >10.1016/j.padiff.2024.100878</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A complete dynamical analysis of discrete electric lattice coupled with modified Zakharov-Kuznetsov equation

  • Popis výsledku v původním jazyce

    The behavior of nonlinear waves within a modified Zakharov-Kuznetsov equation and their interactions with discrete electric lattice structures are examined in this study. The ϕ6MINUS SIGN model expansion method is utilized to acquire substantial knowledge into the complex dynamics of the system under consideration, particularly with regard to the discrete electric lattice and analytical electrical solitons. By incorporating higher-order effects and improving accuracy in representing specific physical conditions, the study achieves a more realistic portrayal of nonlinear wave dynamics. The investigation also sheds light on the relationship between non-linearity, discreteness, and equation dynamics by exploring the conditions that lead to the formation of solitons and other nonlinear structures. In addition, a unique set of electrical solitons is defined to explore dynamic behaviors such as chaotic, quasi-periodic, and periodic motions under various parameterized conditions, including an external damping force. Phase plane analysis is visualized by using dynamic structure 3D and 2D phase plots, is used for bifurcation and sensitivity inspections. Finally, time series graphs are offered as mathematical depictions of solitary waves, and Lyapunov exponents with real and complex eigenvalues are used to study the stability and chaotic behaviors of the system. (C) 2024 The Author(s)

  • Název v anglickém jazyce

    A complete dynamical analysis of discrete electric lattice coupled with modified Zakharov-Kuznetsov equation

  • Popis výsledku anglicky

    The behavior of nonlinear waves within a modified Zakharov-Kuznetsov equation and their interactions with discrete electric lattice structures are examined in this study. The ϕ6MINUS SIGN model expansion method is utilized to acquire substantial knowledge into the complex dynamics of the system under consideration, particularly with regard to the discrete electric lattice and analytical electrical solitons. By incorporating higher-order effects and improving accuracy in representing specific physical conditions, the study achieves a more realistic portrayal of nonlinear wave dynamics. The investigation also sheds light on the relationship between non-linearity, discreteness, and equation dynamics by exploring the conditions that lead to the formation of solitons and other nonlinear structures. In addition, a unique set of electrical solitons is defined to explore dynamic behaviors such as chaotic, quasi-periodic, and periodic motions under various parameterized conditions, including an external damping force. Phase plane analysis is visualized by using dynamic structure 3D and 2D phase plots, is used for bifurcation and sensitivity inspections. Finally, time series graphs are offered as mathematical depictions of solitary waves, and Lyapunov exponents with real and complex eigenvalues are used to study the stability and chaotic behaviors of the system. (C) 2024 The Author(s)

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10100 - Mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    O - Projekt operacniho programu

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Partial Differential Equations in Applied Mathematics

  • ISSN

    2666-8181

  • e-ISSN

    2666-8181

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    September

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    14

  • Strana od-do

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85201507593