Impact of fractional and integer order derivatives on the (4+1)-dimensional fractional Davey–Stewartson–Kadomtsev–Petviashvili equation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10256391" target="_blank" >RIV/61989100:27740/24:10256391 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2666818124003528?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2666818124003528?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.padiff.2024.100966" target="_blank" >10.1016/j.padiff.2024.100966</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Impact of fractional and integer order derivatives on the (4+1)-dimensional fractional Davey–Stewartson–Kadomtsev–Petviashvili equation
Popis výsledku v původním jazyce
In this study, the closed-form wave solutions of the (4+1)-dimensional fractional Davey–Stewartson–Kadomtsev–Petviashvili equation are investigated using the modified auxiliary equation method and the Jacobi elliptic function method. In the analysis, two fractional derivatives known as M-truncated, beta and integer order derivative are used. The fractional-order partial differential equation is transformed into an integer-order ordinary differential equation by using the wave transformation, fractional derivatives, and integer-order derivatives. As a result, wave function solutions are found, including bell shape, W-shaped, composite dark-bright and periodic wave. The effects of free parameters on the amplitudes and wave behaviors are illustrated. It is demonstrated extensively that changes in the free parameters lead to changes in the wave amplitude. A comparison of solutions using the two types of fractional derivatives and the integer-order derivatives is included. The effects of the beta derivative, the M-truncated derivative and integer order derivative on the considered model are presented using 2D and 3D figures. © 2024 The Authors
Název v anglickém jazyce
Impact of fractional and integer order derivatives on the (4+1)-dimensional fractional Davey–Stewartson–Kadomtsev–Petviashvili equation
Popis výsledku anglicky
In this study, the closed-form wave solutions of the (4+1)-dimensional fractional Davey–Stewartson–Kadomtsev–Petviashvili equation are investigated using the modified auxiliary equation method and the Jacobi elliptic function method. In the analysis, two fractional derivatives known as M-truncated, beta and integer order derivative are used. The fractional-order partial differential equation is transformed into an integer-order ordinary differential equation by using the wave transformation, fractional derivatives, and integer-order derivatives. As a result, wave function solutions are found, including bell shape, W-shaped, composite dark-bright and periodic wave. The effects of free parameters on the amplitudes and wave behaviors are illustrated. It is demonstrated extensively that changes in the free parameters lead to changes in the wave amplitude. A comparison of solutions using the two types of fractional derivatives and the integer-order derivatives is included. The effects of the beta derivative, the M-truncated derivative and integer order derivative on the considered model are presented using 2D and 3D figures. © 2024 The Authors
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Partial Differential Equations in Applied Mathematics
ISSN
2666-8181
e-ISSN
2666-8181
Svazek periodika
12
Číslo periodika v rámci svazku
December
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85207246283