Exploring analytical solutions and modulation instability for the nonlinear fractional Gilson–Pickering equation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10254113" target="_blank" >RIV/61989100:27740/24:10254113 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2211379724000676?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2211379724000676?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.rinp.2024.107385" target="_blank" >10.1016/j.rinp.2024.107385</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Exploring analytical solutions and modulation instability for the nonlinear fractional Gilson–Pickering equation
Popis výsledku v původním jazyce
The primary goal of this research is to explore the complex dynamics of wave propagation as described by the nonlinear fractional Gilson-Pickering equation (fGPE), a pivotal model in plasma physics and crystal lattice theory. Two alternative fractional derivatives, termed β and M-truncated, are employed in the analysis. The new auxiliary equation method (NAEM) is applied to create diverse explicit solutions for surface waves in the given equation. This study includes a comparative evaluation of these solutions using different types of fractional derivatives. The derived solutions of the nonlinear fGPE, which include unique forms like dark, bright, and periodic solitary waves, are visually represented through 3D and 2D graphs. These visualizations highlight the shapes and behaviors of the solutions, indicating significant implications for industry and innovation. The proposed method's ability to provide analytical solutions demonstrates its effectiveness and reliability in analyzing nonlinear models across various scientific and technical domains. A comprehensive sensitivity analysis is conducted on the dynamical system of the fGPE. Additionally, modulation instability analysis is used to assess the model's stability, confirming its robustness. This analysis verifies the stability and accuracy of all derived solutions.
Název v anglickém jazyce
Exploring analytical solutions and modulation instability for the nonlinear fractional Gilson–Pickering equation
Popis výsledku anglicky
The primary goal of this research is to explore the complex dynamics of wave propagation as described by the nonlinear fractional Gilson-Pickering equation (fGPE), a pivotal model in plasma physics and crystal lattice theory. Two alternative fractional derivatives, termed β and M-truncated, are employed in the analysis. The new auxiliary equation method (NAEM) is applied to create diverse explicit solutions for surface waves in the given equation. This study includes a comparative evaluation of these solutions using different types of fractional derivatives. The derived solutions of the nonlinear fGPE, which include unique forms like dark, bright, and periodic solitary waves, are visually represented through 3D and 2D graphs. These visualizations highlight the shapes and behaviors of the solutions, indicating significant implications for industry and innovation. The proposed method's ability to provide analytical solutions demonstrates its effectiveness and reliability in analyzing nonlinear models across various scientific and technical domains. A comprehensive sensitivity analysis is conducted on the dynamical system of the fGPE. Additionally, modulation instability analysis is used to assess the model's stability, confirming its robustness. This analysis verifies the stability and accuracy of all derived solutions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Results in Physics
ISSN
2211-3797
e-ISSN
2211-3797
Svazek periodika
57
Číslo periodika v rámci svazku
February
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
1-12
Kód UT WoS článku
001179230400001
EID výsledku v databázi Scopus
2-s2.0-85183988370