Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Exploring analytical solutions and modulation instability for the nonlinear fractional Gilson–Pickering equation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10254113" target="_blank" >RIV/61989100:27740/24:10254113 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2211379724000676?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2211379724000676?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.rinp.2024.107385" target="_blank" >10.1016/j.rinp.2024.107385</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Exploring analytical solutions and modulation instability for the nonlinear fractional Gilson–Pickering equation

  • Popis výsledku v původním jazyce

    The primary goal of this research is to explore the complex dynamics of wave propagation as described by the nonlinear fractional Gilson-Pickering equation (fGPE), a pivotal model in plasma physics and crystal lattice theory. Two alternative fractional derivatives, termed β and M-truncated, are employed in the analysis. The new auxiliary equation method (NAEM) is applied to create diverse explicit solutions for surface waves in the given equation. This study includes a comparative evaluation of these solutions using different types of fractional derivatives. The derived solutions of the nonlinear fGPE, which include unique forms like dark, bright, and periodic solitary waves, are visually represented through 3D and 2D graphs. These visualizations highlight the shapes and behaviors of the solutions, indicating significant implications for industry and innovation. The proposed method&apos;s ability to provide analytical solutions demonstrates its effectiveness and reliability in analyzing nonlinear models across various scientific and technical domains. A comprehensive sensitivity analysis is conducted on the dynamical system of the fGPE. Additionally, modulation instability analysis is used to assess the model&apos;s stability, confirming its robustness. This analysis verifies the stability and accuracy of all derived solutions.

  • Název v anglickém jazyce

    Exploring analytical solutions and modulation instability for the nonlinear fractional Gilson–Pickering equation

  • Popis výsledku anglicky

    The primary goal of this research is to explore the complex dynamics of wave propagation as described by the nonlinear fractional Gilson-Pickering equation (fGPE), a pivotal model in plasma physics and crystal lattice theory. Two alternative fractional derivatives, termed β and M-truncated, are employed in the analysis. The new auxiliary equation method (NAEM) is applied to create diverse explicit solutions for surface waves in the given equation. This study includes a comparative evaluation of these solutions using different types of fractional derivatives. The derived solutions of the nonlinear fGPE, which include unique forms like dark, bright, and periodic solitary waves, are visually represented through 3D and 2D graphs. These visualizations highlight the shapes and behaviors of the solutions, indicating significant implications for industry and innovation. The proposed method&apos;s ability to provide analytical solutions demonstrates its effectiveness and reliability in analyzing nonlinear models across various scientific and technical domains. A comprehensive sensitivity analysis is conducted on the dynamical system of the fGPE. Additionally, modulation instability analysis is used to assess the model&apos;s stability, confirming its robustness. This analysis verifies the stability and accuracy of all derived solutions.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10300 - Physical sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Results in Physics

  • ISSN

    2211-3797

  • e-ISSN

    2211-3797

  • Svazek periodika

    57

  • Číslo periodika v rámci svazku

    February

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    12

  • Strana od-do

    1-12

  • Kód UT WoS článku

    001179230400001

  • EID výsledku v databázi Scopus

    2-s2.0-85183988370