Some important results for the conformable fractional stochastic pantograph differential equations in the Lp space
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10256449" target="_blank" >RIV/61989100:27740/24:10256449 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.isr-publications.com/jmcs/articles-14328-some-important-results-for-the-conformable-fractional-stochastic-pantograph-differential-equations-in-the-mathbflmathrmp-space" target="_blank" >https://www.isr-publications.com/jmcs/articles-14328-some-important-results-for-the-conformable-fractional-stochastic-pantograph-differential-equations-in-the-mathbflmathrmp-space</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.22436/jmcs.037.01.08" target="_blank" >10.22436/jmcs.037.01.08</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Some important results for the conformable fractional stochastic pantograph differential equations in the Lp space
Popis výsledku v původním jazyce
Important mathematical topics include existence, uniqueness, continuous dependency, regularity, and the averaging principle. In this research work, we establish these results for the conformable fractional stochastic pantograph differential equations (CFSPDEs) in L-p space. The situation of p = 2 is generalized by the obtained findings. First, we establish the existence and uniqueness results by applying the contraction mapping principle under a suitably weighted norm and demonstrating the continuous dependency of solutions on both the initial values and fractional exponent 4). . The second section is devoted to examining the regularity of time. As a result, we find that, for each Phi is an element of ( 0, Phi - 1/2 ), the solution to the considered problem has Phi-Holder continuous version. Next, we study the averaging principle by using Jensen's, Gronwall-Bellman's, Holder's, and BurkholderDavis-Gundy's inequalities. To help with the understanding of the theoretical results, we provide three applied examples at the end.
Název v anglickém jazyce
Some important results for the conformable fractional stochastic pantograph differential equations in the Lp space
Popis výsledku anglicky
Important mathematical topics include existence, uniqueness, continuous dependency, regularity, and the averaging principle. In this research work, we establish these results for the conformable fractional stochastic pantograph differential equations (CFSPDEs) in L-p space. The situation of p = 2 is generalized by the obtained findings. First, we establish the existence and uniqueness results by applying the contraction mapping principle under a suitably weighted norm and demonstrating the continuous dependency of solutions on both the initial values and fractional exponent 4). . The second section is devoted to examining the regularity of time. As a result, we find that, for each Phi is an element of ( 0, Phi - 1/2 ), the solution to the considered problem has Phi-Holder continuous version. Next, we study the averaging principle by using Jensen's, Gronwall-Bellman's, Holder's, and BurkholderDavis-Gundy's inequalities. To help with the understanding of the theoretical results, we provide three applied examples at the end.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Mathematics and Computer Science
ISSN
2008-949X
e-ISSN
2008-949X
Svazek periodika
37
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
IR - Íránská islámská republika
Počet stran výsledku
26
Strana od-do
106-131
Kód UT WoS článku
001318373700001
EID výsledku v databázi Scopus
—