Benchmarks for interpretation of QSAR models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15110%2F21%3A73607433" target="_blank" >RIV/61989592:15110/21:73607433 - isvavai.cz</a>
Výsledek na webu
<a href="https://jcheminf.biomedcentral.com/articles/10.1186/s13321-021-00519-x" target="_blank" >https://jcheminf.biomedcentral.com/articles/10.1186/s13321-021-00519-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/s13321-021-00519-x" target="_blank" >10.1186/s13321-021-00519-x</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Benchmarks for interpretation of QSAR models
Popis výsledku v původním jazyce
Interpretation of QSAR models is useful to understand the complex nature of biological or physicochemical processes, guide structural optimization or perform knowledge-based validation of QSAR models. Highly predictive models are usually complex and their interpretation is non-trivial. This is particularly true for modern neural networks. Various approaches to interpretation of these models exist. However, it is difficult to evaluate and compare performance and applicability of these ever-emerging methods. Herein, we developed several benchmark data sets with end-points determined by pre-defined patterns. These data sets are purposed for evaluation of the ability of interpretation approaches to retrieve these patterns. They represent tasks with different complexity levels: from simple atom-based additive properties to pharmacophore hypothesis. We proposed several quantitative metrics of interpretation performance. Applicability of benchmarks and metrics was demonstrated on a set of conventional models and end-to-end graph convolutional neural networks, interpreted by the previously suggested universal ML-agnostic approach for structural interpretation. We anticipate these benchmarks to be useful in evaluation of new interpretation approaches and investigation of decision making of complex "black box" models.
Název v anglickém jazyce
Benchmarks for interpretation of QSAR models
Popis výsledku anglicky
Interpretation of QSAR models is useful to understand the complex nature of biological or physicochemical processes, guide structural optimization or perform knowledge-based validation of QSAR models. Highly predictive models are usually complex and their interpretation is non-trivial. This is particularly true for modern neural networks. Various approaches to interpretation of these models exist. However, it is difficult to evaluate and compare performance and applicability of these ever-emerging methods. Herein, we developed several benchmark data sets with end-points determined by pre-defined patterns. These data sets are purposed for evaluation of the ability of interpretation approaches to retrieve these patterns. They represent tasks with different complexity levels: from simple atom-based additive properties to pharmacophore hypothesis. We proposed several quantitative metrics of interpretation performance. Applicability of benchmarks and metrics was demonstrated on a set of conventional models and end-to-end graph convolutional neural networks, interpreted by the previously suggested universal ML-agnostic approach for structural interpretation. We anticipate these benchmarks to be useful in evaluation of new interpretation approaches and investigation of decision making of complex "black box" models.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10608 - Biochemistry and molecular biology
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Cheminformatics
ISSN
1758-2946
e-ISSN
—
Svazek periodika
13
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
20
Strana od-do
"nestránkováno"
Kód UT WoS článku
000655193100001
EID výsledku v databázi Scopus
2-s2.0-85106862219