Experiments with Fuzzy Methods for Forecasting Time Series as Alternatives to Classical Method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15210%2F21%3A73611257" target="_blank" >RIV/61989592:15210/21:73611257 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.mdpi.com/journal/mathematics" target="_blank" >http://www.mdpi.com/journal/mathematics</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math9192517" target="_blank" >10.3390/math9192517</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Experiments with Fuzzy Methods for Forecasting Time Series as Alternatives to Classical Method
Popis výsledku v původním jazyce
Even though forecasting methods have advanced in the last few decades, economists still face a simple question: which prediction method gives the most accurate results? Econometric forecasting methods can deal with different types of time series and have good results, but in specific cases, they may fail to provide accurate predictions. Recently, new techniques borrowed from the soft computing area were adopted for economic forecasting. Starting from the importance of economic forecasts, we present an experimental study where we compared the accuracy of some of the most used econometric forecasting methods, namely the simple exponential smoothing, Holt and ARIMA methods, with that of two new methods based on the concept of fuzzy time series. We used a set of time series extracted from the Eurostat database and the R software for all data processing. The results of the experiments show that despite not being fully superior to the econometric techniques, the fuzzy time series forecasting methods could be considered as an alternative for specific time series.
Název v anglickém jazyce
Experiments with Fuzzy Methods for Forecasting Time Series as Alternatives to Classical Method
Popis výsledku anglicky
Even though forecasting methods have advanced in the last few decades, economists still face a simple question: which prediction method gives the most accurate results? Econometric forecasting methods can deal with different types of time series and have good results, but in specific cases, they may fail to provide accurate predictions. Recently, new techniques borrowed from the soft computing area were adopted for economic forecasting. Starting from the importance of economic forecasts, we present an experimental study where we compared the accuracy of some of the most used econometric forecasting methods, namely the simple exponential smoothing, Holt and ARIMA methods, with that of two new methods based on the concept of fuzzy time series. We used a set of time series extracted from the Eurostat database and the R software for all data processing. The results of the experiments show that despite not being fully superior to the econometric techniques, the fuzzy time series forecasting methods could be considered as an alternative for specific time series.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50202 - Applied Economics, Econometrics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics
ISSN
2227-7390
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
19
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
9
Strana od-do
17-25
Kód UT WoS článku
000731452600001
EID výsledku v databázi Scopus
2-s2.0-85116681946