The α-weighted averaging operator
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15210%2F23%3A73619768" target="_blank" >RIV/61989592:15210/23:73619768 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0165011423003226" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0165011423003226</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2023.108677" target="_blank" >10.1016/j.fss.2023.108677</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The α-weighted averaging operator
Popis výsledku v původním jazyce
This paper introduces a new type of mean applicable in various areas of science and practice: the α-weighted averaging operator (AWA). AWA has all the properties required from a linear averaging operator and some additional ones. We discuss the applications of AWA in data aggregation in various areas including uncertainty modeling (summarization, defuzzification), multiple-criteria and multi-expert decision-making and evaluation. We prove that when applied to fuzzy numbers, the α-weighted average converges to the possibilistic mean of a fuzzy number with the increasing number of elements in its support. As such the α-weighted average is a more general aggregation operator than the original possibilistic mean. When fuzzy subsets of the real line represent the information to be aggregated, AWA provides new means for their defuzzification compatible with the possibilistic moments, but applicable to discrete and subnormal fuzzy sets. We also introduce a generalized formulation of the α-weighted averaging operator (GAWA) that can be applied in multiple-criteria and multi-expert evaluation and decision-making problems. We suggest the use of GAWA in operations research theory and applications in the context of data aggregation, multiple-criteria and group evaluation and decision-making.
Název v anglickém jazyce
The α-weighted averaging operator
Popis výsledku anglicky
This paper introduces a new type of mean applicable in various areas of science and practice: the α-weighted averaging operator (AWA). AWA has all the properties required from a linear averaging operator and some additional ones. We discuss the applications of AWA in data aggregation in various areas including uncertainty modeling (summarization, defuzzification), multiple-criteria and multi-expert decision-making and evaluation. We prove that when applied to fuzzy numbers, the α-weighted average converges to the possibilistic mean of a fuzzy number with the increasing number of elements in its support. As such the α-weighted average is a more general aggregation operator than the original possibilistic mean. When fuzzy subsets of the real line represent the information to be aggregated, AWA provides new means for their defuzzification compatible with the possibilistic moments, but applicable to discrete and subnormal fuzzy sets. We also introduce a generalized formulation of the α-weighted averaging operator (GAWA) that can be applied in multiple-criteria and multi-expert evaluation and decision-making problems. We suggest the use of GAWA in operations research theory and applications in the context of data aggregation, multiple-criteria and group evaluation and decision-making.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50202 - Applied Economics, Econometrics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
FUZZY SETS AND SYSTEMS
ISSN
0165-0114
e-ISSN
1872-6801
Svazek periodika
471
Číslo periodika v rámci svazku
15 November 2023
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
1-12
Kód UT WoS článku
001069404200001
EID výsledku v databázi Scopus
2-s2.0-85172452145