Grouping fuzzy sets by similarity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F09%3A00010274" target="_blank" >RIV/61989592:15310/09:00010274 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Grouping fuzzy sets by similarity
Popis výsledku v původním jazyce
The paper presents results on factorization of systems of fuzzy sets. The factorization consists in grouping those fuzzy sets which are pairwise similar at least to a prescribed degree a. An obstacle to such factorization, well known in fuzzy set theory,is the fact that ?being similar at least to degree a? is not an equivalence relation because, in general, it is not transitive. As a result, ordinary factorization using equivalence classes cannot be used. This obstacle can be overcome by considering maximal blocks of fuzzy sets which are pairwise similar at least to degree a. We show that one can introduce a natural complete lattice structure on the set of all such maximal blocks and study this lattice. This lattice plays the role of a factor structure for the original system of fuzzy sets. Particular examples of our approach include factorization of fuzzy concept lattices and factorization of residuated lattices.
Název v anglickém jazyce
Grouping fuzzy sets by similarity
Popis výsledku anglicky
The paper presents results on factorization of systems of fuzzy sets. The factorization consists in grouping those fuzzy sets which are pairwise similar at least to a prescribed degree a. An obstacle to such factorization, well known in fuzzy set theory,is the fact that ?being similar at least to degree a? is not an equivalence relation because, in general, it is not transitive. As a result, ordinary factorization using equivalence classes cannot be used. This obstacle can be overcome by considering maximal blocks of fuzzy sets which are pairwise similar at least to degree a. We show that one can introduce a natural complete lattice structure on the set of all such maximal blocks and study this lattice. This lattice plays the role of a factor structure for the original system of fuzzy sets. Particular examples of our approach include factorization of fuzzy concept lattices and factorization of residuated lattices.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BD - Teorie informace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Information Sciences
ISSN
0020-0255
e-ISSN
—
Svazek periodika
179
Číslo periodika v rámci svazku
15
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
6
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—