Fuzzification of Choquet Integral and its application in multiple criteria decision making
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F10%3A10212134" target="_blank" >RIV/61989592:15310/10:10212134 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fuzzification of Choquet Integral and its application in multiple criteria decision making
Popis výsledku v původním jazyce
A common approach in the multiple criteria decision making is to obtain the overall evaluation by aggregating the partial evaluations. For this, a member of a large family of aggregation operators is used. Many of these operators commonly employed in decision making (weighted average, ordered weighted average, minimum, maximum, . . . ) can be used only when criteria are independent. On the other hand, the Choquet integral, a generalization of the aforementioned operators, can be used even when some interactions between criteria occur. We present a fuzzified Choquet integral capable of dealing not only with fuzzy partial evaluations first level fuzzification), but also with fuzzy weights (second level fuzzification). We also provide an effective way toevaluate the fully fuzzified integral, which allows its straightforward application to decision making problems with inherent uncertainty.
Název v anglickém jazyce
Fuzzification of Choquet Integral and its application in multiple criteria decision making
Popis výsledku anglicky
A common approach in the multiple criteria decision making is to obtain the overall evaluation by aggregating the partial evaluations. For this, a member of a large family of aggregation operators is used. Many of these operators commonly employed in decision making (weighted average, ordered weighted average, minimum, maximum, . . . ) can be used only when criteria are independent. On the other hand, the Choquet integral, a generalization of the aforementioned operators, can be used even when some interactions between criteria occur. We present a fuzzified Choquet integral capable of dealing not only with fuzzy partial evaluations first level fuzzification), but also with fuzzy weights (second level fuzzification). We also provide an effective way toevaluate the fully fuzzified integral, which allows its straightforward application to decision making problems with inherent uncertainty.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Network World
ISSN
1210-0552
e-ISSN
—
Svazek periodika
20
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
13
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—