Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Total least squares solution for compositional data using linear models

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F10%3A10212158" target="_blank" >RIV/61989592:15310/10:10212158 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Total least squares solution for compositional data using linear models

  • Popis výsledku v původním jazyce

    The restrictive properties of compositional data, that is multivariate data with positive parts that carry only relative information in their components, call for special care to be taken while performing standard statistical methods, for example, regression analysis. Among the special methods suitable for handling this problem is the total least squares procedure (TLS, orthogonal regression, regression with errors in variables, calibration problem), performed after an appropriate log-ratio transformation. The difficulty or even impossibility of deeper statistical analysis (confidence regions, hypotheses testing) using the standard TLS techniques can be overcome by calibration solution based on linear regression. This approach can be combined with standard statistical inference, for example, confidence and prediction regions and bounds, hypotheses testing, etc., suitable for interpretation of results.

  • Název v anglickém jazyce

    Total least squares solution for compositional data using linear models

  • Popis výsledku anglicky

    The restrictive properties of compositional data, that is multivariate data with positive parts that carry only relative information in their components, call for special care to be taken while performing standard statistical methods, for example, regression analysis. Among the special methods suitable for handling this problem is the total least squares procedure (TLS, orthogonal regression, regression with errors in variables, calibration problem), performed after an appropriate log-ratio transformation. The difficulty or even impossibility of deeper statistical analysis (confidence regions, hypotheses testing) using the standard TLS techniques can be overcome by calibration solution based on linear regression. This approach can be combined with standard statistical inference, for example, confidence and prediction regions and bounds, hypotheses testing, etc., suitable for interpretation of results.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Applied Statistics

  • ISSN

    0266-4763

  • e-ISSN

  • Svazek periodika

    37

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    16

  • Strana od-do

  • Kód UT WoS článku

    000279209700005

  • EID výsledku v databázi Scopus