Optimal decompositions of matrices with grades into binary and graded matrices
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F10%3A10215653" target="_blank" >RIV/61989592:15310/10:10215653 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimal decompositions of matrices with grades into binary and graded matrices
Popis výsledku v původním jazyce
We study the problem of decomposition of object-attribute matrices whose entries contain degrees to which objects have attributes. The degrees are taken from a bounded partially ordered scale. We study the problem of decomposition of a given object-attribute matrix I with degrees into an object-factor matrix A with degrees and a binary factor-attribute matrix B, with the number of factors as small as possible. We present a theorem which shows that decompositions which use particular formal concepts of Ias factors are optimal in that the number of factors involved is the smallest possible. We show that the problem of computing an optimal decomposition is NP-hard and present two heuristic algorithms for its solution along with their experimental evaluation. Experiments indicate that he second algorithm, which is considerably faster than the first one, delivers decompositions whose quality is comparable to the decompositions delivered by the first algorithm.
Název v anglickém jazyce
Optimal decompositions of matrices with grades into binary and graded matrices
Popis výsledku anglicky
We study the problem of decomposition of object-attribute matrices whose entries contain degrees to which objects have attributes. The degrees are taken from a bounded partially ordered scale. We study the problem of decomposition of a given object-attribute matrix I with degrees into an object-factor matrix A with degrees and a binary factor-attribute matrix B, with the number of factors as small as possible. We present a theorem which shows that decompositions which use particular formal concepts of Ias factors are optimal in that the number of factors involved is the smallest possible. We show that the problem of computing an optimal decomposition is NP-hard and present two heuristic algorithms for its solution along with their experimental evaluation. Experiments indicate that he second algorithm, which is considerably faster than the first one, delivers decompositions whose quality is comparable to the decompositions delivered by the first algorithm.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP202%2F10%2F0262" target="_blank" >GAP202/10/0262: Rozklady matic s binárními a ordinálními daty: teorie, algoritmy, složitost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annals of Mathematics and Artificial Intelligence
ISSN
1012-2443
e-ISSN
—
Svazek periodika
59
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
17
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—