Background Knowledge in Formal Concept Analysis: Constraints via Closure Operators.
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F10%3A10216466" target="_blank" >RIV/61989592:15310/10:10216466 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Background Knowledge in Formal Concept Analysis: Constraints via Closure Operators.
Popis výsledku v původním jazyce
The aim of this short paper is to present a general method of using background knowledge to impose constraints in conceptual clustering of object-attribute relational data. The proposed method uses the background knowledge to extract only particular clusters from the input data -- those which are compatible with the background knowledge and thus satisfy the constraint. As a result, the method allows for extracting less clusters in a shorter time which are in addition more interesting. The paper presentsthe idea of constraints formalized by means of closure operators and introduces such constraints to formal concept analysis. Among the bene ts of the presented approach are its versatility (the approach covers several examples studied before, e.g. extraction of closed frequent itemsets in generation of non-redundant association rules) and computational efficiency. Due to scope limitations, we present the main ideas only. Details will be available in a full version of this paper.
Název v anglickém jazyce
Background Knowledge in Formal Concept Analysis: Constraints via Closure Operators.
Popis výsledku anglicky
The aim of this short paper is to present a general method of using background knowledge to impose constraints in conceptual clustering of object-attribute relational data. The proposed method uses the background knowledge to extract only particular clusters from the input data -- those which are compatible with the background knowledge and thus satisfy the constraint. As a result, the method allows for extracting less clusters in a shorter time which are in addition more interesting. The paper presentsthe idea of constraints formalized by means of closure operators and introduces such constraints to formal concept analysis. Among the bene ts of the presented approach are its versatility (the approach covers several examples studied before, e.g. extraction of closed frequent itemsets in generation of non-redundant association rules) and computational efficiency. Due to scope limitations, we present the main ideas only. Details will be available in a full version of this paper.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 25th Symposium On Applied Computing
ISBN
978-1-60558-638-0
ISSN
—
e-ISSN
—
Počet stran výsledku
2
Strana od-do
—
Název nakladatele
ACM Press
Místo vydání
New York
Místo konání akce
Sierre, Švýcarsko
Datum konání akce
22. 3. 2010
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—