The Conrad program: From l-groups to algebras of logic
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F16%3A33156122" target="_blank" >RIV/61989592:15310/16:33156122 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0021869315005566" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0021869315005566</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jalgebra.2015.10.015" target="_blank" >10.1016/j.jalgebra.2015.10.015</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Conrad program: From l-groups to algebras of logic
Popis výsledku v původním jazyce
A number of research articles have established the significant role of l-groups in logic. The fact that underpins these studies is the realization that important algebras of logic may be viewed as l-groups with a modal operator. These connections are just the tip of the iceberg. The purpose of the present article is to lay the groundwork for, and provide significant initial contributions to, the development of a Conrad type approach to the study of algebras of logic. The term Conrad program refers to Paul Conrad's approach to the study of l-groups, which analyzes the structure of individual or classes of l-groups by primarily using strictly lattice theoretic properties of their lattices of convex l-subgroups. The present article demonstrates that large parts of the Conrad program can be profitably extended in the setting of e-cyclic residuated lattices. An indirect benefit of this work is the introduction of new tools and techniques in the study of algebras of logic, and the enhanced role of the lattice of convex subalgebras of a residuated lattice.
Název v anglickém jazyce
The Conrad program: From l-groups to algebras of logic
Popis výsledku anglicky
A number of research articles have established the significant role of l-groups in logic. The fact that underpins these studies is the realization that important algebras of logic may be viewed as l-groups with a modal operator. These connections are just the tip of the iceberg. The purpose of the present article is to lay the groundwork for, and provide significant initial contributions to, the development of a Conrad type approach to the study of algebras of logic. The term Conrad program refers to Paul Conrad's approach to the study of l-groups, which analyzes the structure of individual or classes of l-groups by primarily using strictly lattice theoretic properties of their lattices of convex l-subgroups. The present article demonstrates that large parts of the Conrad program can be profitably extended in the setting of e-cyclic residuated lattices. An indirect benefit of this work is the introduction of new tools and techniques in the study of algebras of logic, and the enhanced role of the lattice of convex subalgebras of a residuated lattice.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GF15-34697L" target="_blank" >GF15-34697L: Nové přístupy k reziduovaným posetům</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Algebra
ISSN
0021-8693
e-ISSN
—
Svazek periodika
450
Číslo periodika v rámci svazku
MAR
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
31
Strana od-do
173-203
Kód UT WoS článku
000375634800006
EID výsledku v databázi Scopus
—