Nonequilibrium quantum bounds to Landauer's principle: Tightness and effectiveness
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F17%3A73582139" target="_blank" >RIV/61989592:15310/17:73582139 - isvavai.cz</a>
Výsledek na webu
<a href="https://journals.aps.org/pra/pdf/10.1103/PhysRevA.96.042109" target="_blank" >https://journals.aps.org/pra/pdf/10.1103/PhysRevA.96.042109</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevA.96.042109" target="_blank" >10.1103/PhysRevA.96.042109</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Nonequilibrium quantum bounds to Landauer's principle: Tightness and effectiveness
Popis výsledku v původním jazyce
We assess two different nonequilibrium quantum Landauer bounds: the traditional approach based on the change in entropy, referred to as the "entropic bound," and one based on the details of the dynamical map, referred to as the "thermodynamic bound." By first restricting to a simple exactly solvable model of a single two-level system coupled to a finite-dimensional thermal environment and by exploiting an excitation-preserving interaction, we establish the dominant role played by the population terms in dictating the tightness of these bounds with respect to the dissipated heat and clearly establish that coherences only affect the entropic bound. Furthermore, we show that sharp boundaries between the relative performance of the two quantities emerge and find that there are clear instances where both approaches return a bound weaker than Clausius' statement of the second law, rendering them ineffective. Finally, we show that our results extend to generic interaction terms.
Název v anglickém jazyce
Nonequilibrium quantum bounds to Landauer's principle: Tightness and effectiveness
Popis výsledku anglicky
We assess two different nonequilibrium quantum Landauer bounds: the traditional approach based on the change in entropy, referred to as the "entropic bound," and one based on the details of the dynamical map, referred to as the "thermodynamic bound." By first restricting to a simple exactly solvable model of a single two-level system coupled to a finite-dimensional thermal environment and by exploiting an excitation-preserving interaction, we establish the dominant role played by the population terms in dictating the tightness of these bounds with respect to the dissipated heat and clearly establish that coherences only affect the entropic bound. Furthermore, we show that sharp boundaries between the relative performance of the two quantities emerge and find that there are clear instances where both approaches return a bound weaker than Clausius' statement of the second law, rendering them ineffective. Finally, we show that our results extend to generic interaction terms.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
<a href="/cs/project/GB14-36681G" target="_blank" >GB14-36681G: Centrum excelence pro klasické a kvantové interakce v nanosvětě</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review A
ISSN
2469-9926
e-ISSN
—
Svazek periodika
96
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
"042109-1"-"042109-7"
Kód UT WoS článku
000412951900002
EID výsledku v databázi Scopus
—