Analysis of the seasonal incidence of acute respiratory infections including influenza (ARI) in the Czech Republic – Possible contribution of the functional data boxplot in epidemiology
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F17%3A73586460" target="_blank" >RIV/61989592:15310/17:73586460 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/75010330:_____/17:00011870
Výsledek na webu
<a href="http://biomed.papers.upol.cz/pdfs/bio/2017/04/08.pdf" target="_blank" >http://biomed.papers.upol.cz/pdfs/bio/2017/04/08.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5507/bp.2017.042" target="_blank" >10.5507/bp.2017.042</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analysis of the seasonal incidence of acute respiratory infections including influenza (ARI) in the Czech Republic – Possible contribution of the functional data boxplot in epidemiology
Popis výsledku v původním jazyce
Aims: The detection of an epidemic outbreak is possible only if the baseline incidence level of a given disease is well defined. The determination of the baseline is complicated by the presence of epidemic outbreaks in historical data. The aim of the paper is to provide a new way of determining the baseline. Methods: The analyzed data containing weekly records on the incidence of acute respiratory infections including influenza (ARI) in the Czech Republic and its regions are taken from the nationwide surveillance system; data on 15 seasons from 2001/02 to 2015/16 are included. Functional boxplots of the data are constructed and five distinct methods (componentwise mean, componentwise median, median, trimmed mean, and adjusted mean) were used for the computation of the baseline level function. Results: It was shown that the methods based on functional data analysis could successfully overcome the problems that arise when the conventional methods are used for the determination of the baseline function. Conclusion: The functional boxplot - a new statistical tool - can bring not only a transparent visualisation of comprehensive data, but can also help epidemiologists and other public health experts to determine the baseline incidence level of a given disease as well as to detect unusual epidemic seasons.
Název v anglickém jazyce
Analysis of the seasonal incidence of acute respiratory infections including influenza (ARI) in the Czech Republic – Possible contribution of the functional data boxplot in epidemiology
Popis výsledku anglicky
Aims: The detection of an epidemic outbreak is possible only if the baseline incidence level of a given disease is well defined. The determination of the baseline is complicated by the presence of epidemic outbreaks in historical data. The aim of the paper is to provide a new way of determining the baseline. Methods: The analyzed data containing weekly records on the incidence of acute respiratory infections including influenza (ARI) in the Czech Republic and its regions are taken from the nationwide surveillance system; data on 15 seasons from 2001/02 to 2015/16 are included. Functional boxplots of the data are constructed and five distinct methods (componentwise mean, componentwise median, median, trimmed mean, and adjusted mean) were used for the computation of the baseline level function. Results: It was shown that the methods based on functional data analysis could successfully overcome the problems that arise when the conventional methods are used for the determination of the baseline function. Conclusion: The functional boxplot - a new statistical tool - can bring not only a transparent visualisation of comprehensive data, but can also help epidemiologists and other public health experts to determine the baseline incidence level of a given disease as well as to detect unusual epidemic seasons.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-06991S" target="_blank" >GA15-06991S: Analýza funkcionálních dat a související témata</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Biomedical Papers-Olomouc
ISSN
1213-8118
e-ISSN
—
Svazek periodika
161
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
8
Strana od-do
381-388
Kód UT WoS článku
000418005200008
EID výsledku v databázi Scopus
—