Estimating the baseline and threshold for the incidence of diseases with seasonal and long-term trends
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F75010330%3A_____%2F15%3A00011084" target="_blank" >RIV/75010330:_____/15:00011084 - isvavai.cz</a>
Výsledek na webu
<a href="http://apps.szu.cz/svi/cejph/show_en.php?kat=archiv/2015-4-12" target="_blank" >http://apps.szu.cz/svi/cejph/show_en.php?kat=archiv/2015-4-12</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21101/cejph.a4392" target="_blank" >10.21101/cejph.a4392</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Estimating the baseline and threshold for the incidence of diseases with seasonal and long-term trends
Popis výsledku v původním jazyce
In epidemiology, it is very important to estimate the baseline incidence of infectious diseases. From this baseline, the epidemic threshold can be derived as a clue to recognize an excess incidence, i.e. to detect an epidemic by mathematical methods. Nevertheless, a problem is posed by the fact that the incidence may vary during the year, as a rule, in a season dependent manner. To model the incidence of a disease, some authors use seasonal trend models. For instance, Serfling applies the sine function with a phase shift and amplitude. A similar model based on the analysis of variance with kernel smoothing and Serflingĺs higher order models, i.e. models composed of multiple sine-cosine function pairs with a variably long period, will be presented below. Serflingĺs model uses a long-term linear trend, but the linearity may not be always acceptable. Therefore, a more complex, long-term trend estimation will also be addressed, using different smoothing methods. In addition, the issue of the time unit (mostly a week) used in describing the incidence is discussed.
Název v anglickém jazyce
Estimating the baseline and threshold for the incidence of diseases with seasonal and long-term trends
Popis výsledku anglicky
In epidemiology, it is very important to estimate the baseline incidence of infectious diseases. From this baseline, the epidemic threshold can be derived as a clue to recognize an excess incidence, i.e. to detect an epidemic by mathematical methods. Nevertheless, a problem is posed by the fact that the incidence may vary during the year, as a rule, in a season dependent manner. To model the incidence of a disease, some authors use seasonal trend models. For instance, Serfling applies the sine function with a phase shift and amplitude. A similar model based on the analysis of variance with kernel smoothing and Serflingĺs higher order models, i.e. models composed of multiple sine-cosine function pairs with a variably long period, will be presented below. Serflingĺs model uses a long-term linear trend, but the linearity may not be always acceptable. Therefore, a more complex, long-term trend estimation will also be addressed, using different smoothing methods. In addition, the issue of the time unit (mostly a week) used in describing the incidence is discussed.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
FN - Epidemiologie, infekční nemoci a klinická imunologie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Central European Journal of Public Health
ISSN
1210-7778
e-ISSN
—
Svazek periodika
23
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
8
Strana od-do
352-359
Kód UT WoS článku
000370311200012
EID výsledku v databázi Scopus
—