Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Estimating the baseline incidence of a seasonal disease independently of epidemic outbreaks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F75010330%3A_____%2F16%3A00011468" target="_blank" >RIV/75010330:_____/16:00011468 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11120/16:43911776

  • Výsledek na webu

    <a href="http://apps.szu.cz/svi/cejph/show_en.php?kat=archiv/2016-3-06" target="_blank" >http://apps.szu.cz/svi/cejph/show_en.php?kat=archiv/2016-3-06</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.21101/cejph.a4800" target="_blank" >10.21101/cejph.a4800</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Estimating the baseline incidence of a seasonal disease independently of epidemic outbreaks

  • Popis výsledku v původním jazyce

    In epidemiology, it is very important to estimate the baseline incidence of infectious diseases, but the available data are often subject to outliers due to epidemic outbreaks. Consequently, the estimate of the baseline incidence is biased and so is the predicted epidemic threshold which is a crucial reference indicator used to suspect and detect an epidemic outbreak. Another problem is that the usual incidence varies in a season dependent manner, i.e. it may not be constant throughout the year, is often periodic, and may also show a trend between years. To take account of these factors, more complicated models adjusted for outliers are used. If not adjusted for outliers, the baseline incidence estimate is biased. As a result, the epidemic threshold can be overestimated and thus can make the detection of an epidemic outbreak more difficult. Classical Serffing's model is based on the sine function with a phase shift and amplitude. Multiple approaches are applied to model the long-term and seasonal trends. Nevertheless, none of them controls for the effect of epidemic outbreaks. The present article deals with the adjustment of the data biased by epidemic outbreaks. Some models adjusted for outliers, i.e. for the effect of epidemic outbreaks, are presented. A possible option is to remove the epidemic weeks from the analysis, but consequently, in some calendar weeks, data will only be available for a small number of years. Furthermore, the detection of an epidemic outbreak by experts (epidemiologists and microbiologists) will be compared with that in various models.

  • Název v anglickém jazyce

    Estimating the baseline incidence of a seasonal disease independently of epidemic outbreaks

  • Popis výsledku anglicky

    In epidemiology, it is very important to estimate the baseline incidence of infectious diseases, but the available data are often subject to outliers due to epidemic outbreaks. Consequently, the estimate of the baseline incidence is biased and so is the predicted epidemic threshold which is a crucial reference indicator used to suspect and detect an epidemic outbreak. Another problem is that the usual incidence varies in a season dependent manner, i.e. it may not be constant throughout the year, is often periodic, and may also show a trend between years. To take account of these factors, more complicated models adjusted for outliers are used. If not adjusted for outliers, the baseline incidence estimate is biased. As a result, the epidemic threshold can be overestimated and thus can make the detection of an epidemic outbreak more difficult. Classical Serffing's model is based on the sine function with a phase shift and amplitude. Multiple approaches are applied to model the long-term and seasonal trends. Nevertheless, none of them controls for the effect of epidemic outbreaks. The present article deals with the adjustment of the data biased by epidemic outbreaks. Some models adjusted for outliers, i.e. for the effect of epidemic outbreaks, are presented. A possible option is to remove the epidemic weeks from the analysis, but consequently, in some calendar weeks, data will only be available for a small number of years. Furthermore, the detection of an epidemic outbreak by experts (epidemiologists and microbiologists) will be compared with that in various models.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    FN - Epidemiologie, infekční nemoci a klinická imunologie

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Central European Journal of Public Health

  • ISSN

    1210-7778

  • e-ISSN

  • Svazek periodika

    24

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    7

  • Strana od-do

    199-205

  • Kód UT WoS článku

    000388551200006

  • EID výsledku v databázi Scopus