Estimating the baseline incidence of a seasonal disease independently of epidemic outbreaks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F75010330%3A_____%2F16%3A00011468" target="_blank" >RIV/75010330:_____/16:00011468 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11120/16:43911776
Výsledek na webu
<a href="http://apps.szu.cz/svi/cejph/show_en.php?kat=archiv/2016-3-06" target="_blank" >http://apps.szu.cz/svi/cejph/show_en.php?kat=archiv/2016-3-06</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21101/cejph.a4800" target="_blank" >10.21101/cejph.a4800</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Estimating the baseline incidence of a seasonal disease independently of epidemic outbreaks
Popis výsledku v původním jazyce
In epidemiology, it is very important to estimate the baseline incidence of infectious diseases, but the available data are often subject to outliers due to epidemic outbreaks. Consequently, the estimate of the baseline incidence is biased and so is the predicted epidemic threshold which is a crucial reference indicator used to suspect and detect an epidemic outbreak. Another problem is that the usual incidence varies in a season dependent manner, i.e. it may not be constant throughout the year, is often periodic, and may also show a trend between years. To take account of these factors, more complicated models adjusted for outliers are used. If not adjusted for outliers, the baseline incidence estimate is biased. As a result, the epidemic threshold can be overestimated and thus can make the detection of an epidemic outbreak more difficult. Classical Serffing's model is based on the sine function with a phase shift and amplitude. Multiple approaches are applied to model the long-term and seasonal trends. Nevertheless, none of them controls for the effect of epidemic outbreaks. The present article deals with the adjustment of the data biased by epidemic outbreaks. Some models adjusted for outliers, i.e. for the effect of epidemic outbreaks, are presented. A possible option is to remove the epidemic weeks from the analysis, but consequently, in some calendar weeks, data will only be available for a small number of years. Furthermore, the detection of an epidemic outbreak by experts (epidemiologists and microbiologists) will be compared with that in various models.
Název v anglickém jazyce
Estimating the baseline incidence of a seasonal disease independently of epidemic outbreaks
Popis výsledku anglicky
In epidemiology, it is very important to estimate the baseline incidence of infectious diseases, but the available data are often subject to outliers due to epidemic outbreaks. Consequently, the estimate of the baseline incidence is biased and so is the predicted epidemic threshold which is a crucial reference indicator used to suspect and detect an epidemic outbreak. Another problem is that the usual incidence varies in a season dependent manner, i.e. it may not be constant throughout the year, is often periodic, and may also show a trend between years. To take account of these factors, more complicated models adjusted for outliers are used. If not adjusted for outliers, the baseline incidence estimate is biased. As a result, the epidemic threshold can be overestimated and thus can make the detection of an epidemic outbreak more difficult. Classical Serffing's model is based on the sine function with a phase shift and amplitude. Multiple approaches are applied to model the long-term and seasonal trends. Nevertheless, none of them controls for the effect of epidemic outbreaks. The present article deals with the adjustment of the data biased by epidemic outbreaks. Some models adjusted for outliers, i.e. for the effect of epidemic outbreaks, are presented. A possible option is to remove the epidemic weeks from the analysis, but consequently, in some calendar weeks, data will only be available for a small number of years. Furthermore, the detection of an epidemic outbreak by experts (epidemiologists and microbiologists) will be compared with that in various models.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
FN - Epidemiologie, infekční nemoci a klinická imunologie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Central European Journal of Public Health
ISSN
1210-7778
e-ISSN
—
Svazek periodika
24
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
7
Strana od-do
199-205
Kód UT WoS článku
000388551200006
EID výsledku v databázi Scopus
—