Regression imputation with Q-mode clustering for rounded zero replacement in high-dimensional compositional data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F18%3A73589105" target="_blank" >RIV/61989592:15310/18:73589105 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1080/02664763.2017.1410524" target="_blank" >http://dx.doi.org/10.1080/02664763.2017.1410524</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/02664763.2017.1410524" target="_blank" >10.1080/02664763.2017.1410524</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Regression imputation with Q-mode clustering for rounded zero replacement in high-dimensional compositional data
Popis výsledku v původním jazyce
The logratio methodology is not applicable when rounded zeros occur in compositional data. There are many methods to deal with rounded zeros. However, some methods are not suitable for analyzing data sets with high dimensionality. Recently, related methods have been developed, but they cannot balance the calculation time and accuracy. For further improvement, we propose a method based on regression imputation with Q-mode clustering. This method forms the groups of parts and builds partial least squares regression with these groups using centered logratio coordinates.We also prove that using centered logratio coordinates or isometric logratio coordinates in the response of partial least squares regression have the equivalent results for the replacement of rounded zeros. Simulation study and real example are conducted to analyze the performance of the proposed method. The results show that the proposed method can reduce the calculation time in higher dimensions and improve the quality of results.
Název v anglickém jazyce
Regression imputation with Q-mode clustering for rounded zero replacement in high-dimensional compositional data
Popis výsledku anglicky
The logratio methodology is not applicable when rounded zeros occur in compositional data. There are many methods to deal with rounded zeros. However, some methods are not suitable for analyzing data sets with high dimensionality. Recently, related methods have been developed, but they cannot balance the calculation time and accuracy. For further improvement, we propose a method based on regression imputation with Q-mode clustering. This method forms the groups of parts and builds partial least squares regression with these groups using centered logratio coordinates.We also prove that using centered logratio coordinates or isometric logratio coordinates in the response of partial least squares regression have the equivalent results for the replacement of rounded zeros. Simulation study and real example are conducted to analyze the performance of the proposed method. The results show that the proposed method can reduce the calculation time in higher dimensions and improve the quality of results.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF APPLIED STATISTICS
ISSN
0266-4763
e-ISSN
—
Svazek periodika
45
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
14
Strana od-do
2067-2080
Kód UT WoS článku
000436973300009
EID výsledku v databázi Scopus
2-s2.0-85049522544