Compositional data analysis for physical activity, sedentary time and sleep research
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F18%3A73589109" target="_blank" >RIV/61989592:15310/18:73589109 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1177/0962280217710835" target="_blank" >http://dx.doi.org/10.1177/0962280217710835</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1177/0962280217710835" target="_blank" >10.1177/0962280217710835</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Compositional data analysis for physical activity, sedentary time and sleep research
Popis výsledku v původním jazyce
The health effects of daily activity behaviours (physical activity, sedentary time and sleep) are widely studied. While previous research has largely examined activity behaviours in isolation, recent studies have adjusted for multiple behaviours. However, the inclusion of all activity behaviours in traditional multivariate analyses has not been possible due to the perfect multicollinearity of 24-h time budget data. The ensuing lack of adjustment for known effects on the outcome undermines the validity of study findings. We describe a statistical approach that enables the inclusion of all daily activity behaviours, based on the principles of compositional data analysis. Using data from the International Study of Childhood Obesity, Lifestyle and the Environment, we demonstrate the application of compositional multiple linear regression to estimate adiposity from children’s daily activity behaviours expressed as isometric log-ratio coordinates. We present a novel method for predicting change in a continuous outcome based on relative changes within a composition, and for calculating associated confidence intervals to allow for statistical inference. The compositional data analysis presented overcomes the lack of adjustment that has plagued traditional statistical methods in the field, and provides robust and reliable insights into the health effects of daily activity behaviours.
Název v anglickém jazyce
Compositional data analysis for physical activity, sedentary time and sleep research
Popis výsledku anglicky
The health effects of daily activity behaviours (physical activity, sedentary time and sleep) are widely studied. While previous research has largely examined activity behaviours in isolation, recent studies have adjusted for multiple behaviours. However, the inclusion of all activity behaviours in traditional multivariate analyses has not been possible due to the perfect multicollinearity of 24-h time budget data. The ensuing lack of adjustment for known effects on the outcome undermines the validity of study findings. We describe a statistical approach that enables the inclusion of all daily activity behaviours, based on the principles of compositional data analysis. Using data from the International Study of Childhood Obesity, Lifestyle and the Environment, we demonstrate the application of compositional multiple linear regression to estimate adiposity from children’s daily activity behaviours expressed as isometric log-ratio coordinates. We present a novel method for predicting change in a continuous outcome based on relative changes within a composition, and for calculating associated confidence intervals to allow for statistical inference. The compositional data analysis presented overcomes the lack of adjustment that has plagued traditional statistical methods in the field, and provides robust and reliable insights into the health effects of daily activity behaviours.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
STATISTICAL METHODS IN MEDICAL RESEARCH
ISSN
0962-2802
e-ISSN
—
Svazek periodika
27
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
3726-3738
Kód UT WoS článku
000452307300013
EID výsledku v databázi Scopus
2-s2.0-85041863757