Cox regression survival analysis with compositional covariates: Application to modelling mortality risk from 24-h physical activity patterns
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73604803" target="_blank" >RIV/61989592:15310/20:73604803 - isvavai.cz</a>
Výsledek na webu
<a href="https://obd.upol.cz/id_publ/333184689" target="_blank" >https://obd.upol.cz/id_publ/333184689</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1177/0962280219864125" target="_blank" >10.1177/0962280219864125</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cox regression survival analysis with compositional covariates: Application to modelling mortality risk from 24-h physical activity patterns
Popis výsledku v původním jazyce
Survival analysis is commonly conducted in medical and public health research to assess the association of an exposure or intervention with a hard end outcome such as mortality. The Cox (proportional hazards) regression model is probably the most popular statistical tool used in this context. However, when the exposure includes compositional covariables (that is, variables representing a relative makeup such as a nutritional or physical activity behaviour composition), some basic assumptions of the Cox regression model and associated significance tests are violated. Compositional variables involve an intrinsic interplay between one another which precludes results and conclusions based on considering them in isolation as is ordinarily done. In this work, we introduce a formulation of the Cox regression model in terms of log-ratio coordinates which suitably deals with the constraints of compositional covariates, facilitates the use of common statistical inference methods, and allows for scientifically meaningful interpretations. We illustrate its practical application to a public health problem: the estimation of the mortality hazard associated with the composition of daily activity behaviour (physical activity, sitting time and sleep) using data from the U.S. National Health and Nutrition Examination Survey (NHANES).
Název v anglickém jazyce
Cox regression survival analysis with compositional covariates: Application to modelling mortality risk from 24-h physical activity patterns
Popis výsledku anglicky
Survival analysis is commonly conducted in medical and public health research to assess the association of an exposure or intervention with a hard end outcome such as mortality. The Cox (proportional hazards) regression model is probably the most popular statistical tool used in this context. However, when the exposure includes compositional covariables (that is, variables representing a relative makeup such as a nutritional or physical activity behaviour composition), some basic assumptions of the Cox regression model and associated significance tests are violated. Compositional variables involve an intrinsic interplay between one another which precludes results and conclusions based on considering them in isolation as is ordinarily done. In this work, we introduce a formulation of the Cox regression model in terms of log-ratio coordinates which suitably deals with the constraints of compositional covariates, facilitates the use of common statistical inference methods, and allows for scientifically meaningful interpretations. We illustrate its practical application to a public health problem: the estimation of the mortality hazard associated with the composition of daily activity behaviour (physical activity, sitting time and sleep) using data from the U.S. National Health and Nutrition Examination Survey (NHANES).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-09188S" target="_blank" >GA18-09188S: Využití analýzy kompozičních dat pro hodnocení kombinovaného efektu pohybové aktivity, sedavého chování a spánku na dětskou obezitu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
STATISTICAL METHODS IN MEDICAL RESEARCH
ISSN
0962-2802
e-ISSN
—
Svazek periodika
29
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
19
Strana od-do
1447-1465
Kód UT WoS článku
000479470500001
EID výsledku v databázi Scopus
2-s2.0-85070291570