Coexistence of periodic solutions with various periods of impulsive differential equations and inclusions on tori via Poincaré operators
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73595051" target="_blank" >RIV/61989592:15310/19:73595051 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0166864118303912" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0166864118303912</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.topol.2019.01.008" target="_blank" >10.1016/j.topol.2019.01.008</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Coexistence of periodic solutions with various periods of impulsive differential equations and inclusions on tori via Poincaré operators
Popis výsledku v původním jazyce
The coexistence of subharmonic periodic solutions of various orders is investigated to the first-order vector system of impulsive (upper-) Carathéodory differential equations and inclusions on tori. As the main tool, our recent Sharkovsky-type results for multivalued maps on tori are applied via the associated Poincaré translation operators along the trajectories of given systems. The solvability criteria are formulated, under natural bi-periodicity assumptions imposed on the right-hand sides, in terms of the Lefschetz numbers of admissible impulsive maps. Since the criteria become effective on the circle, the main general theorem can be improved and reformulated there in a more transparent way. The obtained results can be regarded in a certain sense as a nontrivial extension of those due to Poincaré, Denjoy and van Kampen.
Název v anglickém jazyce
Coexistence of periodic solutions with various periods of impulsive differential equations and inclusions on tori via Poincaré operators
Popis výsledku anglicky
The coexistence of subharmonic periodic solutions of various orders is investigated to the first-order vector system of impulsive (upper-) Carathéodory differential equations and inclusions on tori. As the main tool, our recent Sharkovsky-type results for multivalued maps on tori are applied via the associated Poincaré translation operators along the trajectories of given systems. The solvability criteria are formulated, under natural bi-periodicity assumptions imposed on the right-hand sides, in terms of the Lefschetz numbers of admissible impulsive maps. Since the criteria become effective on the circle, the main general theorem can be improved and reformulated there in a more transparent way. The obtained results can be regarded in a certain sense as a nontrivial extension of those due to Poincaré, Denjoy and van Kampen.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Topology and its Applications
ISSN
0166-8641
e-ISSN
—
Svazek periodika
255
Číslo periodika v rámci svazku
MAR
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
15
Strana od-do
126-140
Kód UT WoS článku
000459528900008
EID výsledku v databázi Scopus
2-s2.0-85060841324