Time series of workload on railway routes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73597178" target="_blank" >RIV/61989592:15310/19:73597178 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-19810-7_37" target="_blank" >http://dx.doi.org/10.1007/978-3-030-19810-7_37</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-19810-7_37" target="_blank" >10.1007/978-3-030-19810-7_37</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Time series of workload on railway routes
Popis výsledku v původním jazyce
The article presents the processing of time series of the workload on railway routes in the Czech Republic. The data for railway stations and signal blocks on routes were processed. The aim is to describe some typical railway stations form the point of structure and workload changes. Both passenger and freight trains are recorded. The descriptive data contains the monthly aggregation of count and weight for passenger and freight trains. Monthly-length correction of data was processed before the evaluation of the time series. Examples of time series for se-lected stations show that passenger trains are mainly stationary time series other-wise the freight trains are non-stationary time series with a trend. Some stations have a sessional component of series in data about freight trains. In that case, it is possible to predict the time series from old previous data.
Název v anglickém jazyce
Time series of workload on railway routes
Popis výsledku anglicky
The article presents the processing of time series of the workload on railway routes in the Czech Republic. The data for railway stations and signal blocks on routes were processed. The aim is to describe some typical railway stations form the point of structure and workload changes. Both passenger and freight trains are recorded. The descriptive data contains the monthly aggregation of count and weight for passenger and freight trains. Monthly-length correction of data was processed before the evaluation of the time series. Examples of time series for se-lected stations show that passenger trains are mainly stationary time series other-wise the freight trains are non-stationary time series with a trend. Some stations have a sessional component of series in data about freight trains. In that case, it is possible to predict the time series from old previous data.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
50703 - Transport planning and social aspects of transport (transport engineering to be 2.1)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Arteficial Intelligence Methods in Intelligent Algorithms
ISBN
978-3-030-19810-7
Počet stran výsledku
11
Strana od-do
370-380
Počet stran knihy
404
Název nakladatele
Springer International Publishing AG, Switzerland
Místo vydání
Cham
Kód UT WoS kapitoly
000503762800037