Generalized pseudo-EMV-effect algebras
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73597340" target="_blank" >RIV/61989592:15310/19:73597340 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007%2Fs00500-019-03880-0" target="_blank" >https://link.springer.com/article/10.1007%2Fs00500-019-03880-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00500-019-03880-0" target="_blank" >10.1007/s00500-019-03880-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Generalized pseudo-EMV-effect algebras
Popis výsledku v původním jazyce
EMV-algebras were recently introduced in Dvurecenskij and Zahiri (Fuzzy Sets Syst, 2019. 10.1016/j.fss.2019.02.013) as new structures generalizing both MV-algebras and Boolean rings. These algebras do not assume that they contain a top element. We present a non-commutative generalization of EMV-algebras, called pseudo-EMV-algebras. We show how from a pseudo-EMV-algebra we can derive a generalized pseudo-EMV-effect algebra and conversely, from a generalized effect algebra with a stronger type of the Riesz decomposition property we can derive a pseudo-EMV-algebra. We show that every generalized pseudo-EMV-effect algebra without top element can be embedded into a pseudo-MV-effect algebra with top element as a maximal and normal ideal of the pseudo-MV-effect algebra.
Název v anglickém jazyce
Generalized pseudo-EMV-effect algebras
Popis výsledku anglicky
EMV-algebras were recently introduced in Dvurecenskij and Zahiri (Fuzzy Sets Syst, 2019. 10.1016/j.fss.2019.02.013) as new structures generalizing both MV-algebras and Boolean rings. These algebras do not assume that they contain a top element. We present a non-commutative generalization of EMV-algebras, called pseudo-EMV-algebras. We show how from a pseudo-EMV-algebra we can derive a generalized pseudo-EMV-effect algebra and conversely, from a generalized effect algebra with a stronger type of the Riesz decomposition property we can derive a pseudo-EMV-algebra. We show that every generalized pseudo-EMV-effect algebra without top element can be embedded into a pseudo-MV-effect algebra with top element as a maximal and normal ideal of the pseudo-MV-effect algebra.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SOFT COMPUTING
ISSN
1432-7643
e-ISSN
—
Svazek periodika
23
Číslo periodika v rámci svazku
20
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
9807-9819
Kód UT WoS článku
000487038100003
EID výsledku v databázi Scopus
2-s2.0-85062779347