Trading-off Data Fit and Complexity in Training Gaussian Processes with Multiple Kernels
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73598355" target="_blank" >RIV/61989592:15310/19:73598355 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-030-37599-7_48" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-37599-7_48</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-37599-7_48" target="_blank" >10.1007/978-3-030-37599-7_48</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Trading-off Data Fit and Complexity in Training Gaussian Processes with Multiple Kernels
Popis výsledku v původním jazyce
Gaussian processes (GPs) belong to a class of probabilistic techniques that have been successfully used in different domains of machine learning and optimization. They are popular because they provide uncertainties in predictions, which sets them apart from other modelling methods providing only point predictions. The uncertainty is particularly useful for decision making as we can gauge how reliable a prediction is. One of the fundamental challenges in using GPs is that the efficacy of a model is conferred by selecting an appropriate kernel and the associated hyperparameter values for a given problem. Furthermore, the training of GPs, that is optimizing the hyperparameters using a data set is traditionally performed using a cost function that is a weighted sum of data fit and model complexity, and the underlying trade-off is completely ignored. Addressing these challenges and shortcomings, in this article, we propose the following automated training scheme. Firstly, we use a weighted product of multiple kernels with a view to relieve the users from choosing an appropriate kernel for the problem at hand without any domain specific knowledge. Secondly, for the first time, we modify GP training by using a multi-objective optimizer to tune the hyperparameters and weights of multiple kernels and extract an approximation of the complete trade-off front between data-fit and model complexity. We then propose to use a novel solution selection strategy based on mean standardized log loss (MSLL) to select a solution from the estimated trade-off front and finalise training of a GP model. The results on three data sets and comparison with the standard approach clearly show the potential benefit of the proposed approach of using multi-objective optimization with multiple kernels.
Název v anglickém jazyce
Trading-off Data Fit and Complexity in Training Gaussian Processes with Multiple Kernels
Popis výsledku anglicky
Gaussian processes (GPs) belong to a class of probabilistic techniques that have been successfully used in different domains of machine learning and optimization. They are popular because they provide uncertainties in predictions, which sets them apart from other modelling methods providing only point predictions. The uncertainty is particularly useful for decision making as we can gauge how reliable a prediction is. One of the fundamental challenges in using GPs is that the efficacy of a model is conferred by selecting an appropriate kernel and the associated hyperparameter values for a given problem. Furthermore, the training of GPs, that is optimizing the hyperparameters using a data set is traditionally performed using a cost function that is a weighted sum of data fit and model complexity, and the underlying trade-off is completely ignored. Addressing these challenges and shortcomings, in this article, we propose the following automated training scheme. Firstly, we use a weighted product of multiple kernels with a view to relieve the users from choosing an appropriate kernel for the problem at hand without any domain specific knowledge. Secondly, for the first time, we modify GP training by using a multi-objective optimizer to tune the hyperparameters and weights of multiple kernels and extract an approximation of the complete trade-off front between data-fit and model complexity. We then propose to use a novel solution selection strategy based on mean standardized log loss (MSLL) to select a solution from the estimated trade-off front and finalise training of a GP model. The results on three data sets and comparison with the standard approach clearly show the potential benefit of the proposed approach of using multi-objective optimization with multiple kernels.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_049%2F0008408" target="_blank" >EF17_049/0008408: Hydrodynamický design čerpadel</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Nicosia G., Pardalos P., Umeton R., Giuffrida G., Sciacca V. (eds) Machine Learning, Optimization, and Data Science. LOD 2019.
ISBN
978-3-030-37598-0
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
13
Strana od-do
579-591
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Certosa di Pontignano, Siena – Tuscany, Italy
Datum konání akce
10. 9. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—