Densely Functionalized Cyanographene Bypasses Aqueous Electrolytes and Synthetic Limitations Toward Seamless Graphene/beta-FeOOH Hybrids for Supercapacitors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73600631" target="_blank" >RIV/61989592:15310/19:73600631 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/epdf/10.1002/adfm.201906998" target="_blank" >https://onlinelibrary.wiley.com/doi/epdf/10.1002/adfm.201906998</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/adfm.201906998" target="_blank" >10.1002/adfm.201906998</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Densely Functionalized Cyanographene Bypasses Aqueous Electrolytes and Synthetic Limitations Toward Seamless Graphene/beta-FeOOH Hybrids for Supercapacitors
Popis výsledku v původním jazyce
Supercapacitors are a promising energy storage technology owing to their unparalleled power and lifetime. However, to meet the continuously rising demands of energy storage, they must be equipped with higher energy densities. For this purpose, the seamless integration of metal oxides on carbon matrices, such as iron oxides/oxyhydroxides, has been pursued through hydrothermal, atomic layer and electro-deposition methods directly on current collectors. Nevertheless, such methods present limited compatibility with commercial paste-coating processes on the current collectors. Furthermore, iron oxides/oxyhydroxides lack conductivity and are hydrophilic, operating with low-voltage aqueous electrolytes, limiting their power and energy and requiring corrosion-resistant H2O current collectors. To mitigate these challenges, a seamless and paste-ready material is successfully developed through a 15 min wet-chemical method, via the coordination of ultrasmall beta-FeOOH (akaganeite) nanoparticles to the nitrile groups of a covalent graphene derivative. Endowed with graphene-like impedance response and very high wettability in organic electrolytes, combined high power and energy densities are obtained, with respect to the total mass of both electrode materials and current collectors, overcoming the identified challenges. This offers future prospects for the exploration of alternative molecular handles for improved interfaces and their application in different energy-storage chemistries.
Název v anglickém jazyce
Densely Functionalized Cyanographene Bypasses Aqueous Electrolytes and Synthetic Limitations Toward Seamless Graphene/beta-FeOOH Hybrids for Supercapacitors
Popis výsledku anglicky
Supercapacitors are a promising energy storage technology owing to their unparalleled power and lifetime. However, to meet the continuously rising demands of energy storage, they must be equipped with higher energy densities. For this purpose, the seamless integration of metal oxides on carbon matrices, such as iron oxides/oxyhydroxides, has been pursued through hydrothermal, atomic layer and electro-deposition methods directly on current collectors. Nevertheless, such methods present limited compatibility with commercial paste-coating processes on the current collectors. Furthermore, iron oxides/oxyhydroxides lack conductivity and are hydrophilic, operating with low-voltage aqueous electrolytes, limiting their power and energy and requiring corrosion-resistant H2O current collectors. To mitigate these challenges, a seamless and paste-ready material is successfully developed through a 15 min wet-chemical method, via the coordination of ultrasmall beta-FeOOH (akaganeite) nanoparticles to the nitrile groups of a covalent graphene derivative. Endowed with graphene-like impedance response and very high wettability in organic electrolytes, combined high power and energy densities are obtained, with respect to the total mass of both electrode materials and current collectors, overcoming the identified challenges. This offers future prospects for the exploration of alternative molecular handles for improved interfaces and their application in different energy-storage chemistries.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ADVANCED FUNCTIONAL MATERIALS
ISSN
1616-301X
e-ISSN
—
Svazek periodika
29
Číslo periodika v rámci svazku
51
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
11
Strana od-do
"1906998-1"-"1906998-11"
Kód UT WoS článku
000516572400027
EID výsledku v databázi Scopus
2-s2.0-85074032935