A comparison of generalised linear models and compositional models for ordered categorical data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73596479" target="_blank" >RIV/61989592:15310/20:73596479 - isvavai.cz</a>
Výsledek na webu
<a href="https://journals.sagepub.com/doi/epub/10.1177/1471082X18816540" target="_blank" >https://journals.sagepub.com/doi/epub/10.1177/1471082X18816540</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1177/1471082X18816540" target="_blank" >10.1177/1471082X18816540</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A comparison of generalised linear models and compositional models for ordered categorical data
Popis výsledku v původním jazyce
Ordered categorical data occur in many applied fields, such as geochemistry, econometrics, sociology and demography or even transportation research, for example, in the form of results from various questionnaires. There are different possibilities for modelling proportions of individual categories. Generalised linear models (GLMs) are traditionally used for this purpose, but also methods of compositional data analysis (CoDa) can be considered. Here, both approaches are compared in depth. Particularly, different assumptions of the models on variability are highlighted. Advantages and disadvantages of individual models are pointed out. While the CoDa model may be inappropriate when the variability of the compositional coordinates depends on the regressors, for example, due to different total counts on which the coordinates are based, the GLM may underestimate the uncertainty of the predictions considerably in case of large-scale data.
Název v anglickém jazyce
A comparison of generalised linear models and compositional models for ordered categorical data
Popis výsledku anglicky
Ordered categorical data occur in many applied fields, such as geochemistry, econometrics, sociology and demography or even transportation research, for example, in the form of results from various questionnaires. There are different possibilities for modelling proportions of individual categories. Generalised linear models (GLMs) are traditionally used for this purpose, but also methods of compositional data analysis (CoDa) can be considered. Here, both approaches are compared in depth. Particularly, different assumptions of the models on variability are highlighted. Advantages and disadvantages of individual models are pointed out. While the CoDa model may be inappropriate when the variability of the compositional coordinates depends on the regressors, for example, due to different total counts on which the coordinates are based, the GLM may underestimate the uncertainty of the predictions considerably in case of large-scale data.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
STATISTICAL MODELLING
ISSN
1471-082X
e-ISSN
1477-0342
Svazek periodika
20
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
25
Strana od-do
249-273
Kód UT WoS článku
000532435800002
EID výsledku v databázi Scopus
2-s2.0-85060626313