Combining Floquet and Lyapunov techniques for time-dependent problems in optomechanics and electromechanics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73601594" target="_blank" >RIV/61989592:15310/20:73601594 - isvavai.cz</a>
Výsledek na webu
<a href="https://iopscience.iop.org/article/10.1088/1367-2630/ab8cab/pdf" target="_blank" >https://iopscience.iop.org/article/10.1088/1367-2630/ab8cab/pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1367-2630/ab8cab" target="_blank" >10.1088/1367-2630/ab8cab</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Combining Floquet and Lyapunov techniques for time-dependent problems in optomechanics and electromechanics
Popis výsledku v původním jazyce
Cavity optomechanics and electromechanics form an established field of research investigating the interactions between electromagnetic fields and the motion of quantum mechanical resonators. In many applications, linearised form of the interaction is used, which allows for the system dynamics to be fully described using a Lyapunov equation for the covariance matrix of the Wigner function. This approach, however, is problematic in situations where the Hamiltonian becomes time dependent as is the case for systems driven at multiple frequencies simultaneously. This scenario is highly relevant as it leads to dissipative preparation of mechanical states or backaction-evading measurements of mechanical motion. The time-dependent dynamics can be solved with Floquet techniques whose application is, nevertheless, not straightforward. Here, we describe a general method for combining the Lyapunov approach with Floquet techniques that enables us to transform the initial time-dependent problem into a time-independent one, at the acceptable cost of enlarging the drift and diffusion matrix. We show how the lengthy process of applying the Floquet formalism to the original equations of motion and deriving a Lyapunov equation from their time-independent form can be simplified with the use of properly defined Fourier components of the drift matrix of the original time-dependent system. We then use our formalism to comprehensively analyse dissipative generation of mechanical squeezing beyond the rotating wave approximation. Our method is applicable to various problems with multitone driving schemes in cavity optomechanics, electromechanics, and related disciplines.
Název v anglickém jazyce
Combining Floquet and Lyapunov techniques for time-dependent problems in optomechanics and electromechanics
Popis výsledku anglicky
Cavity optomechanics and electromechanics form an established field of research investigating the interactions between electromagnetic fields and the motion of quantum mechanical resonators. In many applications, linearised form of the interaction is used, which allows for the system dynamics to be fully described using a Lyapunov equation for the covariance matrix of the Wigner function. This approach, however, is problematic in situations where the Hamiltonian becomes time dependent as is the case for systems driven at multiple frequencies simultaneously. This scenario is highly relevant as it leads to dissipative preparation of mechanical states or backaction-evading measurements of mechanical motion. The time-dependent dynamics can be solved with Floquet techniques whose application is, nevertheless, not straightforward. Here, we describe a general method for combining the Lyapunov approach with Floquet techniques that enables us to transform the initial time-dependent problem into a time-independent one, at the acceptable cost of enlarging the drift and diffusion matrix. We show how the lengthy process of applying the Floquet formalism to the original equations of motion and deriving a Lyapunov equation from their time-independent form can be simplified with the use of properly defined Fourier components of the drift matrix of the original time-dependent system. We then use our formalism to comprehensively analyse dissipative generation of mechanical squeezing beyond the rotating wave approximation. Our method is applicable to various problems with multitone driving schemes in cavity optomechanics, electromechanics, and related disciplines.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
New Journal of Physics
ISSN
1367-2630
e-ISSN
—
Svazek periodika
22
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
17
Strana od-do
"063019-1"-"063019-17"
Kód UT WoS článku
000543092500001
EID výsledku v databázi Scopus
2-s2.0-85088873737