Application of multi-criteria decision-making under uncertainty in personnel selection of academic staff
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73605166" target="_blank" >RIV/61989592:15310/20:73605166 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/26867184:_____/20:N0000024
Výsledek na webu
<a href="http://emijournal.cz/wp-content/uploads/2020/11/08_APPLICATION-OF-MULTI-CRITERIA-DECISION-MAKING-UNDER-UNCERTAINTY-IN-PERSONNEL-SELECTION-OF-ACADEMIC-STAFF.pdf" target="_blank" >http://emijournal.cz/wp-content/uploads/2020/11/08_APPLICATION-OF-MULTI-CRITERIA-DECISION-MAKING-UNDER-UNCERTAINTY-IN-PERSONNEL-SELECTION-OF-ACADEMIC-STAFF.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Application of multi-criteria decision-making under uncertainty in personnel selection of academic staff
Popis výsledku v původním jazyce
Selecting the best personnel among several applicants is an important and complex multi-criteria decision-making problem for human resources management. In recent years, a growing interest in university academic staff selection has been noted since the quality of staff has a direct influence on the organization’s effectiveness. The process of selecting a suitable academic staff contains various types of uncertainty. The uncertainty arises especially when the qualitative criteria are considered and the candidates are evaluated verbally, or when the importance of criteria is not described precisely. A suitable tool for describing and dealing with the uncertainty brings fuzzy sets theory that was introduced in 1965 by Lotfi A. Zadeh and that has been subsequently applied to many fields in engineering and science. In this paper, the fuzzy multi-criteria decision-making model based on the fuzzy weighted average will be developed to solve the academic staff selection problem. The model will contain 6 criteria (specified according to the suggestions of experts from the HR college and university managements) and their importance will be described by triangular normalized fuzzy weights. The final evaluations of the candidates will be obtained by the fuzzy weighted averages of fuzzy evaluations with respect to the criteria. The ordering of candidates will be based on the centres of gravity and visual examination of the graphs of membership functions of their fuzzy evaluations.
Název v anglickém jazyce
Application of multi-criteria decision-making under uncertainty in personnel selection of academic staff
Popis výsledku anglicky
Selecting the best personnel among several applicants is an important and complex multi-criteria decision-making problem for human resources management. In recent years, a growing interest in university academic staff selection has been noted since the quality of staff has a direct influence on the organization’s effectiveness. The process of selecting a suitable academic staff contains various types of uncertainty. The uncertainty arises especially when the qualitative criteria are considered and the candidates are evaluated verbally, or when the importance of criteria is not described precisely. A suitable tool for describing and dealing with the uncertainty brings fuzzy sets theory that was introduced in 1965 by Lotfi A. Zadeh and that has been subsequently applied to many fields in engineering and science. In this paper, the fuzzy multi-criteria decision-making model based on the fuzzy weighted average will be developed to solve the academic staff selection problem. The model will contain 6 criteria (specified according to the suggestions of experts from the HR college and university managements) and their importance will be described by triangular normalized fuzzy weights. The final evaluations of the candidates will be obtained by the fuzzy weighted averages of fuzzy evaluations with respect to the criteria. The ordering of candidates will be based on the centres of gravity and visual examination of the graphs of membership functions of their fuzzy evaluations.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Ekonomika Management Inovace
ISSN
1804-1299
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
10
Strana od-do
55-64
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—