Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On the properties of the fuzzy weighted average of fuzzy numbers with normalized fuzzy weights

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73607791" target="_blank" >RIV/61989592:15310/21:73607791 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/26867184:_____/21:N0000009

  • Výsledek na webu

    <a href="https://ijfs.usb.ac.ir/article_6173_97e5e9d3db17c8b02c64af90288bbd34.pdf" target="_blank" >https://ijfs.usb.ac.ir/article_6173_97e5e9d3db17c8b02c64af90288bbd34.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.22111/ijfs.2021.6173" target="_blank" >10.22111/ijfs.2021.6173</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On the properties of the fuzzy weighted average of fuzzy numbers with normalized fuzzy weights

  • Popis výsledku v původním jazyce

    Weighted average with normalized weights is a widely used aggregation operator that takes into account the varying degrees of importance of the numbers in a data set. It possesses some important properties, like monotonicity, continuity, additivity, etc., that play an important role in practical applications. The inputs of the aggregation as well as the normalized weights are usually not known precisely. In such a case, their values can be expressed by fuzzy numbers, and the fuzzy weighted average of fuzzy numbers with normalized fuzzy weights needs to be employed in the model. The aim of the paper is to reveal whether and in which way the properties of the weighted average operator can be observed also for its fuzzy extension. It is shown that it possesses three conditions characteristic for aggregation operators - identity, monotonicity and boundary conditions, and besides that, also compensation, idempotency, stability for linear transformation, 1-lipschitzianity, and continuity. Furthermore, it is proved that it preserves strict monotonicity in case of positive fuzzy weights, and symmetry in case of equal fuzzy weights, although it does not coincide with the fuzzy arithmetic mean operator in such a case. One of the most valuable result of the study is the fact that in contrast to the crisp weighted average operator, it is not additive. The importance of the obtained results is discussed and illustrated by several illustrative examples.

  • Název v anglickém jazyce

    On the properties of the fuzzy weighted average of fuzzy numbers with normalized fuzzy weights

  • Popis výsledku anglicky

    Weighted average with normalized weights is a widely used aggregation operator that takes into account the varying degrees of importance of the numbers in a data set. It possesses some important properties, like monotonicity, continuity, additivity, etc., that play an important role in practical applications. The inputs of the aggregation as well as the normalized weights are usually not known precisely. In such a case, their values can be expressed by fuzzy numbers, and the fuzzy weighted average of fuzzy numbers with normalized fuzzy weights needs to be employed in the model. The aim of the paper is to reveal whether and in which way the properties of the weighted average operator can be observed also for its fuzzy extension. It is shown that it possesses three conditions characteristic for aggregation operators - identity, monotonicity and boundary conditions, and besides that, also compensation, idempotency, stability for linear transformation, 1-lipschitzianity, and continuity. Furthermore, it is proved that it preserves strict monotonicity in case of positive fuzzy weights, and symmetry in case of equal fuzzy weights, although it does not coincide with the fuzzy arithmetic mean operator in such a case. One of the most valuable result of the study is the fact that in contrast to the crisp weighted average operator, it is not additive. The importance of the obtained results is discussed and illustrated by several illustrative examples.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Iranian Journal of Fuzzy Systems

  • ISSN

    1735-0654

  • e-ISSN

  • Svazek periodika

    18

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    IR - Íránská islámská republika

  • Počet stran výsledku

    17

  • Strana od-do

    1-17

  • Kód UT WoS článku

    000654276900001

  • EID výsledku v databázi Scopus

    2-s2.0-85107621684