Adjoint operations in twist-products of lattices
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73609271" target="_blank" >RIV/61989592:15310/21:73609271 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2073-8994/13/2/253/htm" target="_blank" >https://www.mdpi.com/2073-8994/13/2/253/htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/sym13020253" target="_blank" >10.3390/sym13020253</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Adjoint operations in twist-products of lattices
Popis výsledku v původním jazyce
Given an integral commutative residuated lattices L = (L, V, A), its full twist-product (L-2, (sic), (sic)) can be endowed with two binary operations circle dot and double right arrow introduced formerly by M. Busaniche and R. Cignoli as well as by C. Tsinakis and A. M. Wille such that it becomes a commutative residuated lattice. For every a is an element of L we define a certain subset P-a (L) of L-2. We characterize when Pa(L) is a sublattice of the full twist-product (L-2, (sic), (sic)). In this case P-a( L) together with some natural antitone involution ' ecomes a pseudo-Kleene lattice. If L is distributive then (P-a(L), (sic), (sic), ') becomes a Kleene lattice. We present sufficient conditions for P-a(L) being a subalgebra of (L-2,(sic), (sic), circle dot, double right arrow) and thus for and) being a pair of adjoint operations on P-a(L). Finally, we introduce another pair circle dot and double right arrow of adjoint operations on the full twist-product of a bounded commutative residuated lattice such that the resulting algebra is a bounded commutative residuated lattice satisfying the double negation law, and we investigate when P-a(L) is closed under these new operations.
Název v anglickém jazyce
Adjoint operations in twist-products of lattices
Popis výsledku anglicky
Given an integral commutative residuated lattices L = (L, V, A), its full twist-product (L-2, (sic), (sic)) can be endowed with two binary operations circle dot and double right arrow introduced formerly by M. Busaniche and R. Cignoli as well as by C. Tsinakis and A. M. Wille such that it becomes a commutative residuated lattice. For every a is an element of L we define a certain subset P-a (L) of L-2. We characterize when Pa(L) is a sublattice of the full twist-product (L-2, (sic), (sic)). In this case P-a( L) together with some natural antitone involution ' ecomes a pseudo-Kleene lattice. If L is distributive then (P-a(L), (sic), (sic), ') becomes a Kleene lattice. We present sufficient conditions for P-a(L) being a subalgebra of (L-2,(sic), (sic), circle dot, double right arrow) and thus for and) being a pair of adjoint operations on P-a(L). Finally, we introduce another pair circle dot and double right arrow of adjoint operations on the full twist-product of a bounded commutative residuated lattice such that the resulting algebra is a bounded commutative residuated lattice satisfying the double negation law, and we investigate when P-a(L) is closed under these new operations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GF20-09869L" target="_blank" >GF20-09869L: Ortomodularita z různých pohledů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Symmetry-Basel
ISSN
2073-8994
e-ISSN
—
Svazek periodika
13
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
13
Strana od-do
"253 "- 265
Kód UT WoS článku
000623197000001
EID výsledku v databázi Scopus
2-s2.0-85100533570