Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Residuation in twist products and pseudo-Kleene posets

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73609455" target="_blank" >RIV/61989592:15310/22:73609455 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://mb.math.cas.cz/full/147/3/mb147_3_7.pdf" target="_blank" >https://mb.math.cas.cz/full/147/3/mb147_3_7.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.21136/MB.2021.0182-20" target="_blank" >10.21136/MB.2021.0182-20</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Residuation in twist products and pseudo-Kleene posets

  • Popis výsledku v původním jazyce

    M. Busaniche, R. Cignoli (2014), C. Tsinakis and A. M. Wille (2006) showed that every residuated lattice induces a residuation on its full twist product. For their construction they used also lattice operations. We generalize this problem to left-residuated groupoids which need not be lattice-ordered. Hence, we cannot use the same construction for the full twist product. We present another appropriate construction which, however, does not preserve commutativity and associativity of multiplication. Hence we introduce the so-called operator residuated posets to obtain another construction which preserves the mentioned properties, but the results of operators on the full twist product need not be elements, but may be subsets. We apply this construction also to restricted twist products and present necessary and sufficient conditions under which we obtain a pseudo-Kleene operator residuated poset.

  • Název v anglickém jazyce

    Residuation in twist products and pseudo-Kleene posets

  • Popis výsledku anglicky

    M. Busaniche, R. Cignoli (2014), C. Tsinakis and A. M. Wille (2006) showed that every residuated lattice induces a residuation on its full twist product. For their construction they used also lattice operations. We generalize this problem to left-residuated groupoids which need not be lattice-ordered. Hence, we cannot use the same construction for the full twist product. We present another appropriate construction which, however, does not preserve commutativity and associativity of multiplication. Hence we introduce the so-called operator residuated posets to obtain another construction which preserves the mentioned properties, but the results of operators on the full twist product need not be elements, but may be subsets. We apply this construction also to restricted twist products and present necessary and sufficient conditions under which we obtain a pseudo-Kleene operator residuated poset.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GF20-09869L" target="_blank" >GF20-09869L: Ortomodularita z různých pohledů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Mathematica Bohemica

  • ISSN

    0862-7959

  • e-ISSN

    2464-7136

  • Svazek periodika

    147

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    15

  • Strana od-do

    369-383

  • Kód UT WoS článku

    000712909500001

  • EID výsledku v databázi Scopus

    2-s2.0-85139953921