n-dimensional observables on k-perfect MV-algebras and k-perfect effect algebras. I. Characteristic points
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73609901" target="_blank" >RIV/61989592:15310/22:73609901 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0165011421001858" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0165011421001858</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2021.05.005" target="_blank" >10.1016/j.fss.2021.05.005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
n-dimensional observables on k-perfect MV-algebras and k-perfect effect algebras. I. Characteristic points
Popis výsledku v původním jazyce
In the paper, we investigate a one-to-one correspondence between $n$-dimensional observables and $n$-dimensional spectral resolutions with values in a kind of a lexicographic form of quantum structures like perfect MV-algebras or perfect effect algebras. The multidimensional version of this problem is more complicated than a one-dimensional one because if our algebraic structure is $k$-perfect for $k>1$, then even for the two-dimensional case we have more characteristic points. The obtained results are also applied to existence of an $n$-dimensional meet joint observable of $n$ one-dimensional observables on a perfect MV-algebra. The results are divided into two parts. In Part I, we present notions of $n$-dimensional observables and $n$-dimensional spectral resolutions with accent on lexicographic type effect algebras and lexicographic MV-algebras. We concentrate on characteristic points of spectral resolutions and the main body is in Part II where one-to-one relations between observables and spectral resolutions are presented.
Název v anglickém jazyce
n-dimensional observables on k-perfect MV-algebras and k-perfect effect algebras. I. Characteristic points
Popis výsledku anglicky
In the paper, we investigate a one-to-one correspondence between $n$-dimensional observables and $n$-dimensional spectral resolutions with values in a kind of a lexicographic form of quantum structures like perfect MV-algebras or perfect effect algebras. The multidimensional version of this problem is more complicated than a one-dimensional one because if our algebraic structure is $k$-perfect for $k>1$, then even for the two-dimensional case we have more characteristic points. The obtained results are also applied to existence of an $n$-dimensional meet joint observable of $n$ one-dimensional observables on a perfect MV-algebra. The results are divided into two parts. In Part I, we present notions of $n$-dimensional observables and $n$-dimensional spectral resolutions with accent on lexicographic type effect algebras and lexicographic MV-algebras. We concentrate on characteristic points of spectral resolutions and the main body is in Part II where one-to-one relations between observables and spectral resolutions are presented.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GF20-09869L" target="_blank" >GF20-09869L: Ortomodularita z různých pohledů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
FUZZY SETS AND SYSTEMS
ISSN
0165-0114
e-ISSN
1872-6801
Svazek periodika
442
Číslo periodika v rámci svazku
SI
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
16
Strana od-do
1-16
Kód UT WoS článku
000813335800001
EID výsledku v databázi Scopus
2-s2.0-85107327283