Choquet type integrals for single-valued functions with respect to set-functions and set-multifunctions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F23%3A73621116" target="_blank" >RIV/61989592:15310/23:73621116 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S002002552300227X" target="_blank" >https://www.sciencedirect.com/science/article/pii/S002002552300227X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ins.2023.02.038" target="_blank" >10.1016/j.ins.2023.02.038</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Choquet type integrals for single-valued functions with respect to set-functions and set-multifunctions
Popis výsledku v původním jazyce
Due to their numerous applications such as in decision making, information fusion, game theory, and data mining, Choquet integrals have recently attracted much attention. In this study, two generalization types of Choquet integrals are presented. First, a generalized Choquet type integral of a single-valued function is introduced with respect to a set-function and measure. Several of its properties, such as convergence theorems and Jensen's inequality, are proved. Second, in the spirit of the single-valued Choquet integral, a generalized Choquet type set-valued integral for a single-valued function with respect to a set-multifunction and measure is introduced using Aumann integrals as well as various properties, including convergence theorems.
Název v anglickém jazyce
Choquet type integrals for single-valued functions with respect to set-functions and set-multifunctions
Popis výsledku anglicky
Due to their numerous applications such as in decision making, information fusion, game theory, and data mining, Choquet integrals have recently attracted much attention. In this study, two generalization types of Choquet integrals are presented. First, a generalized Choquet type integral of a single-valued function is introduced with respect to a set-function and measure. Several of its properties, such as convergence theorems and Jensen's inequality, are proved. Second, in the spirit of the single-valued Choquet integral, a generalized Choquet type set-valued integral for a single-valued function with respect to a set-multifunction and measure is introduced using Aumann integrals as well as various properties, including convergence theorems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
INFORMATION SCIENCES
ISSN
0020-0255
e-ISSN
1872-6291
Svazek periodika
630
Číslo periodika v rámci svazku
JUN
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
252-270
Kód UT WoS článku
000944407600001
EID výsledku v databázi Scopus
2-s2.0-85148323214