Classification of companies with assistance of self-learning neural networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F10%3A00144585" target="_blank" >RIV/62156489:43110/10:00144585 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Classification of companies with assistance of self-learning neural networks
Popis výsledku v původním jazyce
The article is focused on rating classification of financial situation of enterprises using self-learning artificial neural networks. This is such a situation where sets of objects of particular classes are not well-known. Otherwise, it would be possibleto use a multi-layer neural network with learning according to models. The advantage of a self-learning network is particularly the fact that its classification is not burdened by a subjective view. With reference to complexity this sorting into groupsmay be very difficult even for experienced experts. The article also comprises examples which confirm the described method functionality and neural network model used. Major attention is focused on classification of agricultural companies. For this purpose financial indicators of eighty-one agricultural companies were used.
Název v anglickém jazyce
Classification of companies with assistance of self-learning neural networks
Popis výsledku anglicky
The article is focused on rating classification of financial situation of enterprises using self-learning artificial neural networks. This is such a situation where sets of objects of particular classes are not well-known. Otherwise, it would be possibleto use a multi-layer neural network with learning according to models. The advantage of a self-learning network is particularly the fact that its classification is not burdened by a subjective view. With reference to complexity this sorting into groupsmay be very difficult even for experienced experts. The article also comprises examples which confirm the described method functionality and neural network model used. Major attention is focused on classification of agricultural companies. For this purpose financial indicators of eighty-one agricultural companies were used.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Agricultural economics : Zemědělská ekonomika
ISSN
0139-570X
e-ISSN
—
Svazek periodika
56
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
8
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—