Forecast of Consumer Behaviour Based on Neural Networks Models Comparison.
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F12%3A00200599" target="_blank" >RIV/62156489:43110/12:00200599 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Forecast of Consumer Behaviour Based on Neural Networks Models Comparison.
Popis výsledku v původním jazyce
The aim of this article is comparison of accuracy level of forecasted values of several artificial neural network models. The comparison is performed on datasets of Czech household consumption values. Several statistical models en resolve this task withmore or fewer restrictions. In previous work where models' input conditions were not so strict and model with missing data was used (the time series didn't contain many values) we have obtained comparably good results with artificial neural networks. Twoviews - practical and theoretical, motivate the purpose of this study. Forecasting models for medium term prognosis of the main trends of Czech household consumption is part of the faculty research design grant MSM 6215648904/03/02 (Sub-task 5.3) whichdefines the practical purpose. Testing of nonlinear autoregressive artificial neural network model compared with feedforward neural network and radial basis function neural network defines the theoretical purpose. The performance metrics
Název v anglickém jazyce
Forecast of Consumer Behaviour Based on Neural Networks Models Comparison.
Popis výsledku anglicky
The aim of this article is comparison of accuracy level of forecasted values of several artificial neural network models. The comparison is performed on datasets of Czech household consumption values. Several statistical models en resolve this task withmore or fewer restrictions. In previous work where models' input conditions were not so strict and model with missing data was used (the time series didn't contain many values) we have obtained comparably good results with artificial neural networks. Twoviews - practical and theoretical, motivate the purpose of this study. Forecasting models for medium term prognosis of the main trends of Czech household consumption is part of the faculty research design grant MSM 6215648904/03/02 (Sub-task 5.3) whichdefines the practical purpose. Testing of nonlinear autoregressive artificial neural network model compared with feedforward neural network and radial basis function neural network defines the theoretical purpose. The performance metrics
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis
ISSN
1211-8516
e-ISSN
—
Svazek periodika
2012
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
6
Strana od-do
437-442
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—