Knowledge discovery on consumers' behaviour
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F13%3A00213762" target="_blank" >RIV/62156489:43110/13:00213762 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Knowledge discovery on consumers' behaviour
Popis výsledku v původním jazyce
This paper summarizes results of the research project "Application of modern methods to data processing in the field of marketing research" which was solved at the Department of Informatics, Faculty of Business and Economics of Mendel University in Brno.The most of these results were presented at international conferences. It describes the use of knowledge discovery techniques on data from marketing research of consumers' behaviour. The paper deals with issues of classification, cluster analysis, correlation and association rules. For classification there were used various algorithms: multi-layer perceptron neural network, self-organizing (Kohonen's) maps, bayesian networks and generation of a decision tree. Beside Kohonen's maps, which were tested inMATLAB software, all classification methods were tested in Weka software. In order to find clusters of the methods K-means, Expectation-Maximization, DBSCAN Weka was also used as software for clustering. Correlation analysis was done bas
Název v anglickém jazyce
Knowledge discovery on consumers' behaviour
Popis výsledku anglicky
This paper summarizes results of the research project "Application of modern methods to data processing in the field of marketing research" which was solved at the Department of Informatics, Faculty of Business and Economics of Mendel University in Brno.The most of these results were presented at international conferences. It describes the use of knowledge discovery techniques on data from marketing research of consumers' behaviour. The paper deals with issues of classification, cluster analysis, correlation and association rules. For classification there were used various algorithms: multi-layer perceptron neural network, self-organizing (Kohonen's) maps, bayesian networks and generation of a decision tree. Beside Kohonen's maps, which were tested inMATLAB software, all classification methods were tested in Weka software. In order to find clusters of the methods K-means, Expectation-Maximization, DBSCAN Weka was also used as software for clustering. Correlation analysis was done bas
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
AE - Řízení, správa a administrativa
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis
ISSN
1211-8516
e-ISSN
—
Svazek periodika
61
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
9
Strana od-do
2893-2901
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—