Using HMM Approach for Assessing Quality of Value at Risk Estimation: Evidence from PSE Listed Company
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F17%3A43912765" target="_blank" >RIV/62156489:43110/17:43912765 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.11118/actaun201765051687" target="_blank" >https://doi.org/10.11118/actaun201765051687</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.11118/actaun201765051687" target="_blank" >10.11118/actaun201765051687</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Using HMM Approach for Assessing Quality of Value at Risk Estimation: Evidence from PSE Listed Company
Popis výsledku v původním jazyce
The article points out the possibilities of using Hidden Markov model (abbrev. HMM) for estimation of Value at Risk metrics (abbrev. VaR) in sample. For the illustration we use data of the company listed on Prague Stock Exchange in range from January 2011 to June 2016. HMM approach allows us to classify time series into different states based on their development characteristic. Due to a deeper shortage of existing domestic results or comparison studies with advanced volatility governed VaR forecasts we tested HMM with univariate ARMA-GARCH model based VaR estimates. The common testing via Kupiec and Christoffersen procedures offer generalization that HMM model performs better that volatility based VaR estimation technique in terms of accuracy, even with the simpler HMM with normal-mixture distribution against previously used GARCH with many types of non-normal innovations.
Název v anglickém jazyce
Using HMM Approach for Assessing Quality of Value at Risk Estimation: Evidence from PSE Listed Company
Popis výsledku anglicky
The article points out the possibilities of using Hidden Markov model (abbrev. HMM) for estimation of Value at Risk metrics (abbrev. VaR) in sample. For the illustration we use data of the company listed on Prague Stock Exchange in range from January 2011 to June 2016. HMM approach allows us to classify time series into different states based on their development characteristic. Due to a deeper shortage of existing domestic results or comparison studies with advanced volatility governed VaR forecasts we tested HMM with univariate ARMA-GARCH model based VaR estimates. The common testing via Kupiec and Christoffersen procedures offer generalization that HMM model performs better that volatility based VaR estimation technique in terms of accuracy, even with the simpler HMM with normal-mixture distribution against previously used GARCH with many types of non-normal innovations.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis
ISSN
1211-8516
e-ISSN
—
Svazek periodika
65
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
8
Strana od-do
1687-1694
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85042848371