Bankruptcy prediction of engineering companies in the EU using classification methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F18%3A43914386" target="_blank" >RIV/62156489:43110/18:43914386 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.11118/actaun201866051347" target="_blank" >https://doi.org/10.11118/actaun201866051347</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.11118/actaun201866051347" target="_blank" >10.11118/actaun201866051347</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bankruptcy prediction of engineering companies in the EU using classification methods
Popis výsledku v původním jazyce
This article focuses on the problem of binary classification of 902 small- and medium-sized engineering companies active in the EU, together with additional 51 companies which went bankrupt in 2014. For classification purposes, the basic statistical method of logistic regression has been selected, together with a representative of machine learning (support vector machines and classification trees method) to construct models for bankruptcy prediction. Different settings have been tested for each method. Furthermore, the models were estimated based on complete data and also using identified artificial factors. To evaluate the quality of prediction we observe not only the total accuracy with the type I and II errors but also the area under ROC curve criterion. The results clearly show that increasing distance to bankruptcy decreases the predictive ability of all models. The classification tree method leads us to rather simple models. The best classification results were achieved through logistic regression based on artificial factors. Moreover, this procedure provides good and stable results regardless of other settings. Artificial factors also seem to be a suitable variable for support vector machines models, but classification trees achieved better results using original data.
Název v anglickém jazyce
Bankruptcy prediction of engineering companies in the EU using classification methods
Popis výsledku anglicky
This article focuses on the problem of binary classification of 902 small- and medium-sized engineering companies active in the EU, together with additional 51 companies which went bankrupt in 2014. For classification purposes, the basic statistical method of logistic regression has been selected, together with a representative of machine learning (support vector machines and classification trees method) to construct models for bankruptcy prediction. Different settings have been tested for each method. Furthermore, the models were estimated based on complete data and also using identified artificial factors. To evaluate the quality of prediction we observe not only the total accuracy with the type I and II errors but also the area under ROC curve criterion. The results clearly show that increasing distance to bankruptcy decreases the predictive ability of all models. The classification tree method leads us to rather simple models. The best classification results were achieved through logistic regression based on artificial factors. Moreover, this procedure provides good and stable results regardless of other settings. Artificial factors also seem to be a suitable variable for support vector machines models, but classification trees achieved better results using original data.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis
ISSN
1211-8516
e-ISSN
—
Svazek periodika
66
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
10
Strana od-do
1347-1356
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85056277770