MT Evaluation in the Context of Language Complexity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F21%3A43920964" target="_blank" >RIV/62156489:43110/21:43920964 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26210/22:PU143580
Výsledek na webu
<a href="https://doi.org/10.1155/2021/2806108" target="_blank" >https://doi.org/10.1155/2021/2806108</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1155/2021/2806108" target="_blank" >10.1155/2021/2806108</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
MT Evaluation in the Context of Language Complexity
Popis výsledku v původním jazyce
The paper focuses on investigating the impact of artificial agent (machine translator) on human agent (posteditor) using a proposed methodology, which is based on language complexity measures, POS tags, frequent tagsets, association rules, and their summarization. We examine this impact from the point of view of language complexity in terms of word and sentence structure. By the proposed methodology, we analyzed 24 733 tags of English to Slovak translations of technical texts, corresponding to the output of two MT systems (Google Translate and the European Commission's MT tool). We used both manual (adequacy and fluency) and semiautomatic (HTER metric) MT evaluation measures as the criteria for validity. We show that the proposed methodology is valid based on the evaluation of frequent tagsets and rules of MT outputs produced by Google Translate or of the European Commission's MT tool, and both postedited MT (PEMT) outputs using baseline methods. Our results have also shown that PEMT output produced by Google Translate is characterized by more frequent tagsets such as verbs in the infinitive with modal verbs compared to its MT output, which is characterized by masculine, inanimate nouns in locative of singular. In the MT output, produced by the European Commission's MT tool, the most frequent tagset was verbs in the infinitive compared to its postedited MT output, where verbs in imperative and the second person of plural occurred. These findings are also obtained from the use of the proposed methodology for MT evaluation. The contribution of the proposed methodology is an identification of systematic not random errors. Additionally, the study can also serve as information for optimizing the translation process using postediting.
Název v anglickém jazyce
MT Evaluation in the Context of Language Complexity
Popis výsledku anglicky
The paper focuses on investigating the impact of artificial agent (machine translator) on human agent (posteditor) using a proposed methodology, which is based on language complexity measures, POS tags, frequent tagsets, association rules, and their summarization. We examine this impact from the point of view of language complexity in terms of word and sentence structure. By the proposed methodology, we analyzed 24 733 tags of English to Slovak translations of technical texts, corresponding to the output of two MT systems (Google Translate and the European Commission's MT tool). We used both manual (adequacy and fluency) and semiautomatic (HTER metric) MT evaluation measures as the criteria for validity. We show that the proposed methodology is valid based on the evaluation of frequent tagsets and rules of MT outputs produced by Google Translate or of the European Commission's MT tool, and both postedited MT (PEMT) outputs using baseline methods. Our results have also shown that PEMT output produced by Google Translate is characterized by more frequent tagsets such as verbs in the infinitive with modal verbs compared to its MT output, which is characterized by masculine, inanimate nouns in locative of singular. In the MT output, produced by the European Commission's MT tool, the most frequent tagset was verbs in the infinitive compared to its postedited MT output, where verbs in imperative and the second person of plural occurred. These findings are also obtained from the use of the proposed methodology for MT evaluation. The contribution of the proposed methodology is an identification of systematic not random errors. Additionally, the study can also serve as information for optimizing the translation process using postediting.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Complexity
ISSN
1076-2787
e-ISSN
—
Svazek periodika
Neuveden
Číslo periodika v rámci svazku
17 December
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
2806108
Kód UT WoS článku
000783326400002
EID výsledku v databázi Scopus
2-s2.0-85122366968