Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Machine Learning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F24%3A43926262" target="_blank" >RIV/62156489:43110/24:43926262 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Machine Learning

  • Popis výsledku v původním jazyce

    Machine learning (ML) is a branch of artificial intelligence that allows computers to learn from data and make decisions or predictions without being explicitly programmed. It has become a crucial technology in many industries, from healthcare and finance to entertainment and self-driving cars. At its core, machine learning involves creating algorithms that can analyze and learn patterns from large datasets, enabling systems to improve their performance over time. The goal is for machines to recognize these patterns and use them to predict future outcomes or make decisions on new, unseen data. Machine learning models can be applied to a wide variety of tasks, including classification, regression, clustering, and anomaly detection. For instance, in a classification task, a machine learning model might be used to classify emails as spam or not spam based on patterns it has learned from a training dataset. In a regression task, the model might predict continuous values, such as stock prices or the temperature for the next day, based on historical data. To develop effective machine learning models, it&apos;s important to understand the underlying data and the methods used for training and evaluation. Data preprocessing is a crucial step to clean and prepare the data for modeling, and model evaluation metrics such as accuracy, precision, and recall are used to assess how well the model performs. Understanding these concepts and techniques will lay the foundation for exploring more advanced topics in machine learning.

  • Název v anglickém jazyce

    Machine Learning

  • Popis výsledku anglicky

    Machine learning (ML) is a branch of artificial intelligence that allows computers to learn from data and make decisions or predictions without being explicitly programmed. It has become a crucial technology in many industries, from healthcare and finance to entertainment and self-driving cars. At its core, machine learning involves creating algorithms that can analyze and learn patterns from large datasets, enabling systems to improve their performance over time. The goal is for machines to recognize these patterns and use them to predict future outcomes or make decisions on new, unseen data. Machine learning models can be applied to a wide variety of tasks, including classification, regression, clustering, and anomaly detection. For instance, in a classification task, a machine learning model might be used to classify emails as spam or not spam based on patterns it has learned from a training dataset. In a regression task, the model might predict continuous values, such as stock prices or the temperature for the next day, based on historical data. To develop effective machine learning models, it&apos;s important to understand the underlying data and the methods used for training and evaluation. Data preprocessing is a crucial step to clean and prepare the data for modeling, and model evaluation metrics such as accuracy, precision, and recall are used to assess how well the model performs. Understanding these concepts and techniques will lay the foundation for exploring more advanced topics in machine learning.

Klasifikace

  • Druh

    B - Odborná kniha

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    O - Projekt operacniho programu

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • ISBN

    978-80-558-2228-0

  • Počet stran knihy

    307

  • Název nakladatele

    Univerzita Konštantína Filozofa v Nitre

  • Místo vydání

    Nitra

  • Kód UT WoS knihy